Geometry and surface damage in micro electrical discharge machining of micro-holes

No Thumbnail Available

Date

2009

Authors

Öpöz, Tahsin Tecelli
Erden, Abdulkadir
Opoz, Tahsin Tecelli
Erden, Abdulkadir

Journal Title

Journal ISSN

Volume Title

Publisher

Iop Publishing Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Mechatronics Engineering
Our purpose in the program is to educate our students for contributing to universal knowledge by doing research on contemporary mechatronics engineering problems and provide them with design, production and publication skills. To reach this goal our post graduate students are offered courses in various areas of mechatronics engineering, encouraged to do research to develop their expertise and their creative side, as well as develop analysis and design skills.

Journal Issue

Abstract

Geometry and subsurface damage of blind micro-holes produced by micro electrical discharge machining (micro-EDM) is investigated experimentally to explore the relational dependence with respect to pulse energy. For this purpose, micro-holes are machined with various pulse energies on plastic mold steel samples using a tungsten carbide tool electrode and a hydrocarbon-based dielectric liquid. Variations in the micro-hole geometry, micro-hole depth and over-cut in micro-hole diameter are measured. Then, unconventional etching agents are applied on the cross sections to examine micro structural alterations within the substrate. It is observed that the heat-damaged segment is composed of three distinctive layers, which have relatively high thicknesses and vary noticeably with respect to the drilling depth. Crack formation is identified on some sections of the micro-holes even by utilizing low pulse energies during machining. It is concluded that the cracking mechanism is different from cracks encountered on the surfaces when machining is performed by using the conventional EDM process. Moreover, an electrically conductive bridge between work material and debris particles is possible at the end tip during machining which leads to electric discharges between the piled segments of debris particles and the tool electrode during discharging.

Description

Ekmekci, Bulent/0000-0002-3632-2197

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Fields of Science

Citation

39

WoS Q

Q3

Scopus Q

Source

Volume

19

Issue

10

Start Page

End Page

Collections