Slot milling of titanium alloy with hexagonal boron nitride and minimum quantity lubrication and multi-objective process optimization for energy efficiency

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Sci Ltd

Research Projects

Organizational Units

Organizational Unit
Manufacturing Engineering
(2003)
Opened in 2003 with the aim to graduate experts in the field of machine-production, our Department is among the firsts in our country to offer education in English. The Manufacturing Engineering program focuses on the manufacturing technologies that shape materials from raw materials to final products by means of analytical, experimental and numerical modeling methods. First Manufacturing Engineering Program to be engineered by Müdek, our department aims to graduate creative and innovative Manufacturing Engineers that are knowledgeable in the current technology, and are able to use production resources in an effective and sustainable way that never disregards environmental facts. As the first Department to implement the Cooperative Education Program at Atılım University in coordination with institutions from the industry, the Manufacturing Engineering offers a practice-oriented approach in education with its laboratory infrastructure and research opportunities. The curriculum at our department is supported by current engineering software, and catered to creating engineers equipped to meet the needs of the production industry.

Journal Issue

Abstract

The implementation of sustainable manufacturing techniques to make machining processes more eco-friendly is a challenging topic that has attracted significant attention from the industrial sector for many years. As one of the dominant manufacturing processes, machining can have a considerable impact in terms of ecology, society, and economics. In certain areas, this impact is a result of using certain cutting fluids, especially during the machining of difficult-to-cut alloys such as titanium, where a large amount of cutting fluid is wasted to ease the cutting process. In such scenarios, identifying suitable machining conditions to supply cutting fluids using eco-friendly techniques is currently a major focus of academic and industrial sector research. In this study, effects of minimum quantity lubrication with different concentrations of hexagonal boron nitride nanoparticles on the surface roughness and cutting force of slot-milled titanium alloy is investigated using analysis of variance and response surface methodology. The results reveal that all responses are sensitive to changes in the feed per tooth, cutting depth, and cutting fluid flow rate. The regression functions generated were combined with particle swarm optimization in order to improve energy-efficiency, as well. Possible sectorial scenarios were generated for wider industrial adoption. With this study, it was proven that utilizing minimum quantity lubrication with hexagonal boron nitride nanoparticles can reduce both cutting force and surface roughness, which makes it to be a promising alternative as a nanoparticle augmented minimum quantity lubrication method for machining titanium alloys. (C) 2020 Elsevier Ltd. All rights reserved.

Description

/0000-0003-2442-0176; UNVER, HAKKI OZGUR/0000-0002-4632-3505

Keywords

Titanium alloy, Milling, Minimum quantity lubrication, Hexagonal boron nitride nanoparticles, Particle swarm optimization

Turkish CoHE Thesis Center URL

Citation

28

WoS Q

Q1

Scopus Q

Source

Volume

258

Issue

Start Page

End Page

Collections