Dört pervaneli hava aracının yükseklik ve yönelim kontrolü

Loading...
Thumbnail Image

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Research Projects

Organizational Units

Organizational Unit
Department of Mechatronics Engineering
Our purpose in the program is to educate our students for contributing to universal knowledge by doing research on contemporary mechatronics engineering problems and provide them with design, production and publication skills. To reach this goal our post graduate students are offered courses in various areas of mechatronics engineering, encouraged to do research to develop their expertise and their creative side, as well as develop analysis and design skills.

Journal Issue

Abstract

Bu tez çalışmasında, düşük maliyetli eyleyiciler ve sürücülerle oluşturulan dış mekanda uçacak dört rotorlu hava aracının (Quadrotor) yükseklik ve yönelim dinamiklerinin kontrolü amaçlanmıştır. Quadrotor, kontrolcü tasarımından önce Matlab/Simulink ortamında matematiksel olarak modellenmiştir. Yönelim dinamiklerini kontrol etmek amacıyla, LQR tip kontrolcü tasarlanmış, benzetimi yapılmış ve sisteme uygulanmıştır. Sapma ve yükseklik dinamiklerinin kontrolü için iki farklı PID tip kontrolcü tasarlanmıştır. Tasarlanan kontrolcüler değişik test düzenekleri kullanılarak sisteme uygulanmıştır. Denetimciler, xPC Target kullanılarak fiziksel sisteme uygulanmış ve kontrolcü parametre ayarlamaları yapılmıştır. Yapılan testler, bu temel kontrolcü yapıları ile yükseklik ve yönelim dinamikleri kontrolünün, başarılı bir şekilde sağlandığını göstermektedir.
In this thesis, controller design for the attitude and altitude dynamics of an outdoor quadrotor, which is constructed with low cost actuators and drivers, is aimed. Before designing the controller, the quadrotor is modeled mathematically in Matlab-Simulink environment. To control attitude dynamics, linear quadratic regulator (LQR) based controllers are designed, simulated and applied to the system. Two different proportional-integral-derivative action (PID) controllers are designed to control yaw and altitude dynamics. During the implementation of the designed controllers, different test setups are used. Designed controllers are implemented and tuned on the real system using xPC Target. Tests show that these basic control structures are successful to control the attitude and altitude dynamics.

Description

Keywords

Mekatronik Mühendisliği, Davranış dinamiği, Kontrol stratejileri, Kontrol teorisi, Mechatronics Engineering, Attitude dynamics, Kontrol yapıları, Control strategies, Control theory, Kontrol yöntemleri, Control structures, Matematiksel modelleme, Control methods, Mathematical modelling, Yükseklik, Altitude

Turkish CoHE Thesis Center URL

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

91