Dynamic analysis of linear viscoelastic cylindrical and conical helicoidal rods using the mixed FEM

dc.authoridEratlı, Nihal/0000-0003-3788-9870
dc.authoridOMURTAG, Mehmet Hakki/0000-0003-2669-6459
dc.authorscopusid6506849928
dc.authorscopusid8213483900
dc.authorscopusid8392630900
dc.authorscopusid6603496934
dc.authorscopusid6602741488
dc.authorwosidEratlı, Nihal/J-4845-2014
dc.authorwosidTEMEL, Beytullah/J-1940-2018
dc.authorwosidOmurtag, Mehmet/M-4536-2013
dc.authorwosidCALIM, FARUK FIRAT/AAJ-7752-2021
dc.contributor.authorEratli, Nihal
dc.contributor.authorArgeso, Hakan
dc.contributor.authorCalim, Faruk F.
dc.contributor.authorTemel, Beytullah
dc.contributor.authorOmurtag, Mehmet H.
dc.contributor.otherManufacturing Engineering
dc.date.accessioned2024-07-05T14:26:45Z
dc.date.available2024-07-05T14:26:45Z
dc.date.issued2014
dc.departmentAtılım Universityen_US
dc.department-temp[Eratli, Nihal; Omurtag, Mehmet H.] Tech Univ Istanbul, Dept Civil Engn, Istanbul, Turkey; [Argeso, Hakan] Atilim Univ, Dept Mfg Engn, Ankara, Turkey; [Calim, Faruk F.] Mustafa Kemal Univ, Dept Civil Engn, Iskenderun, Hatay, Turkey; [Temel, Beytullah] Cukurova Univ, Dept Civil Engn, Adana, Turkeyen_US
dc.descriptionEratlı, Nihal/0000-0003-3788-9870; OMURTAG, Mehmet Hakki/0000-0003-2669-6459en_US
dc.description.abstractThe objective of this study is to investigate the influence of the rotary inertia on dynamic behavior of linear viscoelastic cylindrical and conical helixes by means of the Laplace transform-mixed finite element formulation and solution. The element matrix is based on the Timoshenko beam theory. The influence of rotary inertias is considered in the dynamic analysis, which is original in the literature. Rectangular, sine and step type of impulsive loads are applied on helices having rectangular cross-sections with various aspect ratios. The Kelvin and standard models are used for defining the linear viscoelastic material behavior; and by means of the correspondence principle (the elastic-viscoelastic analogy), the material parameters are replaced with their complex counterparts in the Laplace domain. The analysis is carried out in the Laplace domain and the results are transformed back to time space numerically by modified Durbin's algorithm. First, the solution algorithm is verified using the existing open sources in the literature and afterwards some benchmark examples such as conical viscoelastic rods are handled. (C) 2014 Elsevier Ltd. All rights reserved.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey [111M308]; Research Foundation of ITU [36130]en_US
dc.description.sponsorshipThis research is supported by the Scientific and Technological Research Council of Turkey under Project no. 111M308 and by the Research Foundation of ITU under Project no. 36130. These supports are gratefully acknowledged by the authors.en_US
dc.identifier.citation29
dc.identifier.doi10.1016/j.jsv.2014.03.017
dc.identifier.endpage3690en_US
dc.identifier.issn0022-460X
dc.identifier.issn1095-8568
dc.identifier.issue16en_US
dc.identifier.scopus2-s2.0-84904132988
dc.identifier.scopusqualityQ1
dc.identifier.startpage3671en_US
dc.identifier.urihttps://doi.org/10.1016/j.jsv.2014.03.017
dc.identifier.urihttps://hdl.handle.net/20.500.14411/156
dc.identifier.volume333en_US
dc.identifier.wosWOS:000336822300007
dc.identifier.wosqualityQ1
dc.institutionauthorArgeşo, Ahmet Hakan
dc.language.isoenen_US
dc.publisherAcademic Press Ltd- Elsevier Science Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[No Keyword Available]en_US
dc.titleDynamic analysis of linear viscoelastic cylindrical and conical helicoidal rods using the mixed FEMen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication6b649558-6367-4f53-b5e5-80fe8187e07f
relation.isAuthorOfPublication.latestForDiscovery6b649558-6367-4f53-b5e5-80fe8187e07f
relation.isOrgUnitOfPublication9804a563-7f37-4a61-92b1-e24b3f0d8418
relation.isOrgUnitOfPublication.latestForDiscovery9804a563-7f37-4a61-92b1-e24b3f0d8418

Files

Collections