Coincidence Point Theorems in Quasi-Metric Spaces Without Assuming the Mixed Monotone Property and Consequences in G-Metric Spaces

dc.contributor.author Roldán, Antonio-francisco
dc.contributor.author Karapınar, Erdal
dc.contributor.author De La Sen, Manuel
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-08T12:53:20Z
dc.date.available 2024-07-08T12:53:20Z
dc.date.issued 2014
dc.date.issuedtemp 2014-12-08
dc.description.abstract In this paper, we present some coincidence point theorems in the setting of quasi-metric spaces that can be applied to operators which not necessarily have the mixed monotone property. As a consequence, we particularize our results to the field of metric spaces, partially ordered metric spaces and G-metric spaces, obtaining some very recent results. Finally, we show how to use our main theorems to obtain coupled, tripled, quadrupled and multidimensional coincidence point results.
dc.identifier.uri https://hdl.handle.net/20.500.14411/6460
dc.institutionauthor Karapınar, Erdal
dc.language.iso en
dc.subject mathematics
dc.title Coincidence Point Theorems in Quasi-Metric Spaces Without Assuming the Mixed Monotone Property and Consequences in G-Metric Spaces
dc.type Article
dspace.entity.type Publication
relation.isAuthorOfPublication 69e25f84-afec-4c79-a19a-1e7811d90143
relation.isAuthorOfPublication.latestForDiscovery 69e25f84-afec-4c79-a19a-1e7811d90143
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections