Coincidence Point Theorems in Quasi-Metric Spaces Without Assuming the Mixed Monotone Property and Consequences in G-Metric Spaces
| dc.contributor.author | Roldán, Antonio-francisco | |
| dc.contributor.author | Karapınar, Erdal | |
| dc.contributor.author | De La Sen, Manuel | |
| dc.contributor.other | Mathematics | |
| dc.contributor.other | 02. School of Arts and Sciences | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-07-08T12:53:20Z | |
| dc.date.available | 2024-07-08T12:53:20Z | |
| dc.date.issued | 2014 | |
| dc.description.abstract | In this paper, we present some coincidence point theorems in the setting of quasi-metric spaces that can be applied to operators which not necessarily have the mixed monotone property. As a consequence, we particularize our results to the field of metric spaces, partially ordered metric spaces and G-metric spaces, obtaining some very recent results. Finally, we show how to use our main theorems to obtain coupled, tripled, quadrupled and multidimensional coincidence point results. | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/6460 | |
| dc.language.iso | en | |
| dc.subject | mathematics | |
| dc.title | Coincidence Point Theorems in Quasi-Metric Spaces Without Assuming the Mixed Monotone Property and Consequences in G-Metric Spaces | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Karapınar, Erdal | |
| gdc.coar.type | text::journal::journal article | |
| relation.isAuthorOfPublication | 69e25f84-afec-4c79-a19a-1e7811d90143 | |
| relation.isAuthorOfPublication.latestForDiscovery | 69e25f84-afec-4c79-a19a-1e7811d90143 | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |