A Robust System for Counting People Using an Infrared Sensor and a Camera

dc.authorid Erden, Fatih/0000-0002-1708-3063
dc.authorid Alkar, Ali Ziya/0000-0002-5880-2423
dc.authorscopusid 57189290485
dc.authorscopusid 6506200184
dc.authorscopusid 57197548971
dc.authorwosid ALKAR, ALI ZİYA/G-5897-2013
dc.authorwosid Erden, Fatih/B-3968-2015
dc.contributor.author Erden, Fatih
dc.contributor.author Alkar, Ali Ziya
dc.contributor.author Cetin, Ahmet Enis
dc.contributor.other Department of Electrical & Electronics Engineering
dc.date.accessioned 2024-07-05T14:33:01Z
dc.date.available 2024-07-05T14:33:01Z
dc.date.issued 2015
dc.department Atılım University en_US
dc.department-temp [Erden, Fatih] Atilim Univ, Dept Elect & Elect Engn, TR-06836 Ankara, Turkey; [Alkar, Ali Ziya] Hacettepe Univ, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey; [Cetin, Ahmet Enis] Bilkent Univ, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey en_US
dc.description Erden, Fatih/0000-0002-1708-3063; Alkar, Ali Ziya/0000-0002-5880-2423 en_US
dc.description.abstract In this paper, a multi-modal solution to the people counting problem in a given area is described. The multi-modal system consists of a differential pyro-electric infrared (PIR) sensor and a camera. Faces in the surveillance area are detected by the camera with the aim of counting people using cascaded AdaBoost classifiers. Due to the imprecise results produced by the camera-only system, an additional differential PIR sensor is integrated to the camera. Two types of human motion: (i) entry to and exit from the surveillance area and (ii) ordinary activities in that area are distinguished by the PIR sensor using a Markovian decision algorithm. The wavelet transform of the continuous-time real-valued signal received from the PIR sensor circuit is used for feature extraction from the sensor signal. Wavelet parameters are then fed to a set of Markov models representing the two motion classes. The affiliation of a test signal is decided as the class of the model yielding higher probability. People counting results produced by the camera are then corrected by utilizing the additional information obtained from the PIR sensor signal analysis. With the proof of concept built, it is shown that the multi-modal system can reduce false alarms of the camera-only system and determines the number of people watching a TV set in a more robust manner. (c) 2015 Elsevier B.V. All rights reserved. en_US
dc.identifier.citationcount 9
dc.identifier.doi 10.1016/j.infrared.2015.07.019
dc.identifier.endpage 134 en_US
dc.identifier.issn 1350-4495
dc.identifier.issn 1879-0275
dc.identifier.scopus 2-s2.0-84938824531
dc.identifier.scopusquality Q2
dc.identifier.startpage 127 en_US
dc.identifier.uri https://doi.org/10.1016/j.infrared.2015.07.019
dc.identifier.uri https://hdl.handle.net/20.500.14411/851
dc.identifier.volume 72 en_US
dc.identifier.wos WOS:000362146700017
dc.identifier.wosquality Q2
dc.institutionauthor Erden, Fatih
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 20
dc.subject Infrared sensors en_US
dc.subject Markov models en_US
dc.subject Multi-modal systems en_US
dc.subject People counting en_US
dc.title A Robust System for Counting People Using an Infrared Sensor and a Camera en_US
dc.type Article en_US
dc.wos.citedbyCount 8
dspace.entity.type Publication
relation.isAuthorOfPublication c4a31dd8-3300-4336-8123-72991857fd0d
relation.isAuthorOfPublication.latestForDiscovery c4a31dd8-3300-4336-8123-72991857fd0d
relation.isOrgUnitOfPublication c3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscovery c3c9b34a-b165-4cd6-8959-dc25e91e206b

Files

Collections