A freely damped oscillating fractional dynamic system modeled by fractional Euler-Lagrange equations

dc.authoridBaleanu, Dumitru/0000-0002-0286-7244
dc.authorscopusid57189377610
dc.authorscopusid7005872966
dc.authorscopusid6701790086
dc.authorscopusid57201278122
dc.authorwosidBaleanu, Dumitru/B-9936-2012
dc.contributor.authorAgila, Adel
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorEid, Rajeh
dc.contributor.authorIrfanoglu, Bulent
dc.contributor.otherMathematics
dc.contributor.otherDepartment of Mechatronics Engineering
dc.date.accessioned2024-07-05T15:27:29Z
dc.date.available2024-07-05T15:27:29Z
dc.date.issued2018
dc.departmentAtılım Universityen_US
dc.department-temp[Agila, Adel] Omar Al Mukhtar Univ, Dept Mech Engn, Al Bayda, Libya; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Eid, Rajeh] Atilim Univ, Dept Math, Incek Ankara, Turkey; [Irfanoglu, Bulent] Atilim Univ, Dept Mechatron Engn, Incek Ankara, Turkeyen_US
dc.descriptionBaleanu, Dumitru/0000-0002-0286-7244en_US
dc.description.abstractThe behaviors of some vibrating dynamic systems cannot be modeled precisely by means of integer representation models. Fractional representation looks like it is more accurate to model such systems. In this study, the fractional Euler-Lagrange equations model is introduced to model a fractional damped oscillating system. In this model, the fractional inertia force and the fractional damping force are proportional to the fractional derivative of the displacement. The fractional derivative orders in both forces are considered to be variable fractional orders. A numerical approximation technique is utilized to obtain the system responses. The discretization of the Coimbra fractional derivative and the finite difference technique are used to accomplish this approximation. The response of the system is verified by a comparison to a classical integer representation and is obtained based on different values of system parameters.en_US
dc.identifier.citation11
dc.identifier.doi10.1177/1077546316685228
dc.identifier.endpage1238en_US
dc.identifier.issn1077-5463
dc.identifier.issn1741-2986
dc.identifier.issue7en_US
dc.identifier.scopus2-s2.0-85042885415
dc.identifier.scopusqualityQ2
dc.identifier.startpage1228en_US
dc.identifier.urihttps://doi.org/10.1177/1077546316685228
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2671
dc.identifier.volume24en_US
dc.identifier.wosWOS:000429889300002
dc.identifier.wosqualityQ2
dc.institutionauthorEid, Rajeh
dc.institutionauthorİrfanoğlu, Bülent
dc.language.isoenen_US
dc.publisherSage Publications Ltden_US
dc.relation.publicationcategoryDiğeren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFractional Euler-Lagrange equationsen_US
dc.subjectfractional damped oscillating systemen_US
dc.subjectfractional inertia forceen_US
dc.subjectfractional damping forceen_US
dc.subjectCoimbra fractional derivativeen_US
dc.titleA freely damped oscillating fractional dynamic system modeled by fractional Euler-Lagrange equationsen_US
dc.typeReviewen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationc0414657-2e46-4a36-b3ba-8934a2e55716
relation.isAuthorOfPublicationbe6d4a65-dddc-4afb-84df-26ce7498f80f
relation.isAuthorOfPublication.latestForDiscoveryc0414657-2e46-4a36-b3ba-8934a2e55716
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublicatione2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections