A freely damped oscillating fractional dynamic system modeled by fractional Euler-Lagrange equations
| dc.contributor.author | Agila, Adel | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Eid, Rajeh | |
| dc.contributor.author | Irfanoglu, Bulent | |
| dc.contributor.other | Mathematics | |
| dc.contributor.other | Department of Mechatronics Engineering | |
| dc.contributor.other | 02. School of Arts and Sciences | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-07-05T15:27:29Z | |
| dc.date.available | 2024-07-05T15:27:29Z | |
| dc.date.issued | 2018 | |
| dc.description | Baleanu, Dumitru/0000-0002-0286-7244 | en_US |
| dc.description.abstract | The behaviors of some vibrating dynamic systems cannot be modeled precisely by means of integer representation models. Fractional representation looks like it is more accurate to model such systems. In this study, the fractional Euler-Lagrange equations model is introduced to model a fractional damped oscillating system. In this model, the fractional inertia force and the fractional damping force are proportional to the fractional derivative of the displacement. The fractional derivative orders in both forces are considered to be variable fractional orders. A numerical approximation technique is utilized to obtain the system responses. The discretization of the Coimbra fractional derivative and the finite difference technique are used to accomplish this approximation. The response of the system is verified by a comparison to a classical integer representation and is obtained based on different values of system parameters. | en_US |
| dc.identifier.doi | 10.1177/1077546316685228 | |
| dc.identifier.issn | 1077-5463 | |
| dc.identifier.issn | 1741-2986 | |
| dc.identifier.scopus | 2-s2.0-85042885415 | |
| dc.identifier.uri | https://doi.org/10.1177/1077546316685228 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/2671 | |
| dc.language.iso | en | en_US |
| dc.publisher | Sage Publications Ltd | en_US |
| dc.relation.ispartof | Journal of Vibration and Control | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Fractional Euler-Lagrange equations | en_US |
| dc.subject | fractional damped oscillating system | en_US |
| dc.subject | fractional inertia force | en_US |
| dc.subject | fractional damping force | en_US |
| dc.subject | Coimbra fractional derivative | en_US |
| dc.title | A freely damped oscillating fractional dynamic system modeled by fractional Euler-Lagrange equations | en_US |
| dc.type | Review | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Baleanu, Dumitru/0000-0002-0286-7244 | |
| gdc.author.institutional | Eid, Rajeh | |
| gdc.author.institutional | İrfanoğlu, Bülent | |
| gdc.author.scopusid | 57189377610 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 6701790086 | |
| gdc.author.scopusid | 57201278122 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::review | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | [Agila, Adel] Omar Al Mukhtar Univ, Dept Mech Engn, Al Bayda, Libya; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Eid, Rajeh] Atilim Univ, Dept Math, Incek Ankara, Turkey; [Irfanoglu, Bulent] Atilim Univ, Dept Mechatron Engn, Incek Ankara, Turkey | en_US |
| gdc.description.endpage | 1238 | en_US |
| gdc.description.issue | 7 | en_US |
| gdc.description.publicationcategory | Diğer | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 1228 | en_US |
| gdc.description.volume | 24 | en_US |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W2570384012 | |
| gdc.identifier.wos | WOS:000429889300002 | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 7.0 | |
| gdc.oaire.influence | 3.487545E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 8.089029E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0103 physical sciences | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.fwci | 0.868 | |
| gdc.openalex.normalizedpercentile | 1.0 | |
| gdc.openalex.toppercent | TOP 1% | |
| gdc.opencitations.count | 13 | |
| gdc.plumx.crossrefcites | 13 | |
| gdc.plumx.mendeley | 10 | |
| gdc.plumx.scopuscites | 21 | |
| gdc.scopus.citedcount | 21 | |
| gdc.wos.citedcount | 15 | |
| relation.isAuthorOfPublication | c0414657-2e46-4a36-b3ba-8934a2e55716 | |
| relation.isAuthorOfPublication | be6d4a65-dddc-4afb-84df-26ce7498f80f | |
| relation.isAuthorOfPublication.latestForDiscovery | c0414657-2e46-4a36-b3ba-8934a2e55716 | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | e2a6d0b1-378e-4532-82b1-d17cabc56744 | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |