A freely damped oscillating fractional dynamic system modeled by fractional Euler-Lagrange equations

dc.authorid Baleanu, Dumitru/0000-0002-0286-7244
dc.authorscopusid 57189377610
dc.authorscopusid 7005872966
dc.authorscopusid 6701790086
dc.authorscopusid 57201278122
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Agila, Adel
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Eid, Rajeh
dc.contributor.author Irfanoglu, Bulent
dc.contributor.other Mathematics
dc.contributor.other Department of Mechatronics Engineering
dc.date.accessioned 2024-07-05T15:27:29Z
dc.date.available 2024-07-05T15:27:29Z
dc.date.issued 2018
dc.department Atılım University en_US
dc.department-temp [Agila, Adel] Omar Al Mukhtar Univ, Dept Mech Engn, Al Bayda, Libya; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Eid, Rajeh] Atilim Univ, Dept Math, Incek Ankara, Turkey; [Irfanoglu, Bulent] Atilim Univ, Dept Mechatron Engn, Incek Ankara, Turkey en_US
dc.description Baleanu, Dumitru/0000-0002-0286-7244 en_US
dc.description.abstract The behaviors of some vibrating dynamic systems cannot be modeled precisely by means of integer representation models. Fractional representation looks like it is more accurate to model such systems. In this study, the fractional Euler-Lagrange equations model is introduced to model a fractional damped oscillating system. In this model, the fractional inertia force and the fractional damping force are proportional to the fractional derivative of the displacement. The fractional derivative orders in both forces are considered to be variable fractional orders. A numerical approximation technique is utilized to obtain the system responses. The discretization of the Coimbra fractional derivative and the finite difference technique are used to accomplish this approximation. The response of the system is verified by a comparison to a classical integer representation and is obtained based on different values of system parameters. en_US
dc.identifier.citationcount 11
dc.identifier.doi 10.1177/1077546316685228
dc.identifier.endpage 1238 en_US
dc.identifier.issn 1077-5463
dc.identifier.issn 1741-2986
dc.identifier.issue 7 en_US
dc.identifier.scopus 2-s2.0-85042885415
dc.identifier.scopusquality Q2
dc.identifier.startpage 1228 en_US
dc.identifier.uri https://doi.org/10.1177/1077546316685228
dc.identifier.uri https://hdl.handle.net/20.500.14411/2671
dc.identifier.volume 24 en_US
dc.identifier.wos WOS:000429889300002
dc.identifier.wosquality Q2
dc.institutionauthor Eid, Rajeh
dc.institutionauthor İrfanoğlu, Bülent
dc.language.iso en en_US
dc.publisher Sage Publications Ltd en_US
dc.relation.publicationcategory Diğer en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 18
dc.subject Fractional Euler-Lagrange equations en_US
dc.subject fractional damped oscillating system en_US
dc.subject fractional inertia force en_US
dc.subject fractional damping force en_US
dc.subject Coimbra fractional derivative en_US
dc.title A freely damped oscillating fractional dynamic system modeled by fractional Euler-Lagrange equations en_US
dc.type Review en_US
dc.wos.citedbyCount 14
dspace.entity.type Publication
relation.isAuthorOfPublication c0414657-2e46-4a36-b3ba-8934a2e55716
relation.isAuthorOfPublication be6d4a65-dddc-4afb-84df-26ce7498f80f
relation.isAuthorOfPublication.latestForDiscovery c0414657-2e46-4a36-b3ba-8934a2e55716
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication e2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections