The Unicity Theorems for the Limit Q-Bernstein Operator
dc.authorscopusid | 35610828900 | |
dc.authorwosid | Ostrovska, Sofiya/AAA-2156-2020 | |
dc.contributor.author | Ostrovska, Sofiya | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T14:33:57Z | |
dc.date.available | 2024-07-05T14:33:57Z | |
dc.date.issued | 2009 | |
dc.department | Atılım University | en_US |
dc.department-temp | Atilim Univ, Dept Math, TR-06836 Ankara, Turkey | en_US |
dc.description.abstract | The limit q-Bernstein operator [image omitted] emerges naturally as a q-version of the Szasz-Mirakyan operator related to the Euler distribution. The latter is used in the q-boson theory to describe the energy distribution in a q-analogue of the coherent state. The limit q-Bernstein operator has been widely studied lately. It has been shown that [image omitted] is a positive shape-preserving linear operator on [image omitted] with [image omitted] Its approximation properties, probabilistic interpretation, the behaviour of iterates, eigenstructure and the impact on the smoothness of a function have been examined. In this article, we prove the following unicity theorem for operator: if f is analytic on [0, 1] and [image omitted] for [image omitted] then f is a linear function. The result is sharp in the following sense: for any proper closed subset [image omitted] of [0, 1] satisfying [image omitted] there exists a non-linear infinitely differentiable function f so that [image omitted] for all [image omitted]. | en_US |
dc.description.sponsorship | Atilim University Departmental English Language Studies Unit | en_US |
dc.description.sponsorship | I would like to express my sincere gratitude to Dr Yuri Lyubarsky from the Ben- Gurion University of the Negev for his valuable comments and to P. Danesh from Atilim University Departmental English Language Studies Unit for his assistance in the preparation of the manuscript. | en_US |
dc.identifier.citationcount | 3 | |
dc.identifier.doi | 10.1080/00036810802713784 | |
dc.identifier.endpage | 167 | en_US |
dc.identifier.issn | 0003-6811 | |
dc.identifier.issn | 1563-504X | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-67651229326 | |
dc.identifier.startpage | 161 | en_US |
dc.identifier.uri | https://doi.org/10.1080/00036810802713784 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/998 | |
dc.identifier.volume | 88 | en_US |
dc.identifier.wos | WOS:000266276800002 | |
dc.identifier.wosquality | Q3 | |
dc.institutionauthor | Ostrovska, Sofiya | |
dc.language.iso | en | en_US |
dc.publisher | Taylor & Francis Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 4 | |
dc.subject | limit q-Bernstein operator | en_US |
dc.subject | Szasz-Mirakyan operator | en_US |
dc.subject | q-deformed Poisson distribution | en_US |
dc.subject | Euler distribution | en_US |
dc.subject | analytic function | en_US |
dc.title | The Unicity Theorems for the Limit Q-Bernstein Operator | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 3 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |