The Unicity Theorems for the Limit Q-Bernstein Operator

dc.authorscopusid35610828900
dc.authorwosidOstrovska, Sofiya/AAA-2156-2020
dc.contributor.authorOstrovska, Sofiya
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T14:33:57Z
dc.date.available2024-07-05T14:33:57Z
dc.date.issued2009
dc.departmentAtılım Universityen_US
dc.department-tempAtilim Univ, Dept Math, TR-06836 Ankara, Turkeyen_US
dc.description.abstractThe limit q-Bernstein operator [image omitted] emerges naturally as a q-version of the Szasz-Mirakyan operator related to the Euler distribution. The latter is used in the q-boson theory to describe the energy distribution in a q-analogue of the coherent state. The limit q-Bernstein operator has been widely studied lately. It has been shown that [image omitted] is a positive shape-preserving linear operator on [image omitted] with [image omitted] Its approximation properties, probabilistic interpretation, the behaviour of iterates, eigenstructure and the impact on the smoothness of a function have been examined. In this article, we prove the following unicity theorem for operator: if f is analytic on [0, 1] and [image omitted] for [image omitted] then f is a linear function. The result is sharp in the following sense: for any proper closed subset [image omitted] of [0, 1] satisfying [image omitted] there exists a non-linear infinitely differentiable function f so that [image omitted] for all [image omitted].en_US
dc.description.sponsorshipAtilim University Departmental English Language Studies Uniten_US
dc.description.sponsorshipI would like to express my sincere gratitude to Dr Yuri Lyubarsky from the Ben- Gurion University of the Negev for his valuable comments and to P. Danesh from Atilim University Departmental English Language Studies Unit for his assistance in the preparation of the manuscript.en_US
dc.identifier.citationcount3
dc.identifier.doi10.1080/00036810802713784
dc.identifier.endpage167en_US
dc.identifier.issn0003-6811
dc.identifier.issn1563-504X
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-67651229326
dc.identifier.startpage161en_US
dc.identifier.urihttps://doi.org/10.1080/00036810802713784
dc.identifier.urihttps://hdl.handle.net/20.500.14411/998
dc.identifier.volume88en_US
dc.identifier.wosWOS:000266276800002
dc.identifier.wosqualityQ3
dc.institutionauthorOstrovska, Sofiya
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount4
dc.subjectlimit q-Bernstein operatoren_US
dc.subjectSzasz-Mirakyan operatoren_US
dc.subjectq-deformed Poisson distributionen_US
dc.subjectEuler distributionen_US
dc.subjectanalytic functionen_US
dc.titleThe Unicity Theorems for the Limit Q-Bernstein Operatoren_US
dc.typeArticleen_US
dc.wos.citedbyCount3
dspace.entity.typePublication
relation.isAuthorOfPublicationaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscoveryaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections