Big Data Software Engineering: Analysis of Knowledge Domains and Skill Sets Using Lda-Based Topic Modeling

dc.authorid GURCAN, Fatih/0000-0001-9915-6686
dc.authorid Cagiltay, Nergiz/0000-0003-0875-9276
dc.authorscopusid 57194776706
dc.authorscopusid 16237826800
dc.authorwosid GURCAN, Fatih/AAJ-7503-2021
dc.authorwosid Cagiltay, Nergiz/O-3082-2019
dc.contributor.author Gurcan, Fatih
dc.contributor.author Cagiltay, Nergiz Ercil
dc.contributor.other Software Engineering
dc.date.accessioned 2024-07-05T15:28:34Z
dc.date.available 2024-07-05T15:28:34Z
dc.date.issued 2019
dc.department Atılım University en_US
dc.department-temp [Gurcan, Fatih] Karadeniz Tech Univ, Fac Engn, Dept Comp Engn, TR-61080 Trabzon, Turkey; [Cagiltay, Nergiz Ercil] Atilim Univ, Fac Engn, Dept Software Engn, TR-06830 Ankara, Turkey en_US
dc.description GURCAN, Fatih/0000-0001-9915-6686; Cagiltay, Nergiz/0000-0003-0875-9276 en_US
dc.description.abstract Software engineering is a data-driven discipline and an integral part of data science. The introduction of big data systems has led to a great transformation in the architecture, methodologies, knowledge domains, and skills related to software engineering. Accordingly, education programs are now required to adapt themselves to up-to-date developments by first identifying the competencies concerning big data software engineering to meet the industrial needs and follow the latest trends. This paper aims to reveal the knowledge domains and skill sets required for big data software engineering and develop a taxonomy by mapping these competencies. A semi-automatic methodology is proposed for the semantic analysis of the textual contents of online job advertisements related to big data software engineering. This methodology uses the latent Dirichlet allocation (LDA), a probabilistic topic-modeling technique to discover the hidden semantic structures from a given textual corpus. The output of this paper is a systematic competency map comprising the essential knowledge domains, skills, and tools for big data software engineering. The findings of this paper are expected to help evaluate and improve IT professionals' vocational knowledge and skills, identify professional roles and competencies in personnel recruitment processes of companies, and meet the skill requirements of the industry through software engineering education programs. Additionally, the proposed model can be extended to blogs, social networks, forums, and other online communities to allow automatic identification of emerging trends and generate contextual tags. en_US
dc.identifier.citationcount 61
dc.identifier.doi 10.1109/ACCESS.2019.2924075
dc.identifier.endpage 82552 en_US
dc.identifier.issn 2169-3536
dc.identifier.scopus 2-s2.0-85068646074
dc.identifier.scopusquality Q1
dc.identifier.startpage 82541 en_US
dc.identifier.uri https://doi.org/10.1109/ACCESS.2019.2924075
dc.identifier.uri https://hdl.handle.net/20.500.14411/2819
dc.identifier.volume 7 en_US
dc.identifier.wos WOS:000475354200001
dc.identifier.wosquality Q2
dc.institutionauthor Çağıltay, Nergiz
dc.language.iso en en_US
dc.publisher Ieee-inst Electrical Electronics Engineers inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 116
dc.subject Big data software engineering en_US
dc.subject competency map en_US
dc.subject knowledge domains and skill sets en_US
dc.subject topic modeling en_US
dc.subject latent Dirichlet allocation en_US
dc.title Big Data Software Engineering: Analysis of Knowledge Domains and Skill Sets Using Lda-Based Topic Modeling en_US
dc.type Article en_US
dc.wos.citedbyCount 76
dspace.entity.type Publication
relation.isAuthorOfPublication c99221fa-e0c9-4b73-9f64-54919fcd3c58
relation.isAuthorOfPublication.latestForDiscovery c99221fa-e0c9-4b73-9f64-54919fcd3c58
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscovery d86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections