Positive linear operators generated by analytic functions
dc.authorscopusid | 35610828900 | |
dc.authorwosid | Ostrovska, Sofiya/AAA-2156-2020 | |
dc.contributor.author | Ostrovska, Sofiya | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T14:33:07Z | |
dc.date.available | 2024-07-05T14:33:07Z | |
dc.date.issued | 2007 | |
dc.department | Atılım University | en_US |
dc.department-temp | Atilim Univ, Dept Math, TR-06836 Ankara, Turkey | en_US |
dc.description.abstract | Let phi be a power series with positive Taylor coefficients {a(k)}(k=0)(infinity) and non-zero radius of convergence r <= infinity. Let xi x, 0 <= x <= r be a random variable whose values alpha(k), k = 0, 1,..., are independent of x and taken with probabilities a(k)x(k)/phi(x), k = 0, 1,.... The positive linear operator (A(phi)f)(x) := E[f(xi x)] is studied. It is proved that if E(xi(x)) = x, E(xi(2)(x)) = qx(2) + bx + c, q, b, c is an element of R, q > 0, then A(phi) reduces to the Szasz-Mirakyan operator in the case q = 1, to the limit q-Bernstein operator in the case 0 < q < 1, and to a modification of the Lupas, operator in the case q > 1. | en_US |
dc.identifier.citationcount | 18 | |
dc.identifier.doi | 10.1007/s12044-007-0040-y | |
dc.identifier.endpage | 493 | en_US |
dc.identifier.issn | 0253-4142 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.scopus | 2-s2.0-37249057894 | |
dc.identifier.startpage | 485 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s12044-007-0040-y | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/886 | |
dc.identifier.volume | 117 | en_US |
dc.identifier.wos | WOS:000257101200005 | |
dc.identifier.wosquality | Q4 | |
dc.institutionauthor | Ostrovska, Sofiya | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 20 | |
dc.subject | Szasz -Mirakyan operator | en_US |
dc.subject | positive operator | en_US |
dc.subject | limit q-Bernstein operator | en_US |
dc.subject | q-integers | en_US |
dc.subject | Poisson distribution | en_US |
dc.subject | totally positive sequence | en_US |
dc.title | Positive linear operators generated by analytic functions | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 17 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |