Positive linear operators generated by analytic functions

dc.authorscopusid35610828900
dc.authorwosidOstrovska, Sofiya/AAA-2156-2020
dc.contributor.authorOstrovska, Sofiya
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T14:33:07Z
dc.date.available2024-07-05T14:33:07Z
dc.date.issued2007
dc.departmentAtılım Universityen_US
dc.department-tempAtilim Univ, Dept Math, TR-06836 Ankara, Turkeyen_US
dc.description.abstractLet phi be a power series with positive Taylor coefficients {a(k)}(k=0)(infinity) and non-zero radius of convergence r <= infinity. Let xi x, 0 <= x <= r be a random variable whose values alpha(k), k = 0, 1,..., are independent of x and taken with probabilities a(k)x(k)/phi(x), k = 0, 1,.... The positive linear operator (A(phi)f)(x) := E[f(xi x)] is studied. It is proved that if E(xi(x)) = x, E(xi(2)(x)) = qx(2) + bx + c, q, b, c is an element of R, q > 0, then A(phi) reduces to the Szasz-Mirakyan operator in the case q = 1, to the limit q-Bernstein operator in the case 0 < q < 1, and to a modification of the Lupas, operator in the case q > 1.en_US
dc.identifier.citationcount18
dc.identifier.doi10.1007/s12044-007-0040-y
dc.identifier.endpage493en_US
dc.identifier.issn0253-4142
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-37249057894
dc.identifier.startpage485en_US
dc.identifier.urihttps://doi.org/10.1007/s12044-007-0040-y
dc.identifier.urihttps://hdl.handle.net/20.500.14411/886
dc.identifier.volume117en_US
dc.identifier.wosWOS:000257101200005
dc.identifier.wosqualityQ4
dc.institutionauthorOstrovska, Sofiya
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount20
dc.subjectSzasz -Mirakyan operatoren_US
dc.subjectpositive operatoren_US
dc.subjectlimit q-Bernstein operatoren_US
dc.subjectq-integersen_US
dc.subjectPoisson distributionen_US
dc.subjecttotally positive sequenceen_US
dc.titlePositive linear operators generated by analytic functionsen_US
dc.typeArticleen_US
dc.wos.citedbyCount17
dspace.entity.typePublication
relation.isAuthorOfPublicationaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscoveryaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections