Döküm parametreleri optimizasyonu için hibrid model ve metodoloji önerisi

Loading...
Thumbnail Image

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Industrial Engineering
(1998)
Industrial Engineering is a field of engineering that develops and applies methods and techniques to design, implement, develop and improve systems comprising of humans, materials, machines, energy and funding. Our department was founded in 1998, and since then, has graduated hundreds of individuals who may compete nationally and internationally into professional life. Accredited by MÜDEK in 2014, our student-centered education continues. In addition to acquiring the knowledge necessary for every Industrial engineer, our students are able to gain professional experience in their desired fields of expertise with a wide array of elective courses, such as E-commerce and ERP, Reliability, Tabulation, or Industrial Engineering Applications in the Energy Sector. With dissertation projects fictionalized on solving real problems at real companies, our students gain experience in the sector, and a wide network of contacts. Our education is supported with ERASMUS programs. With the scientific studies of our competent academic staff published in internationally-renowned magazines, our department ranks with the bests among other universities. IESC, one of the most active student networks at our university, continues to organize extensive, and productive events every year.

Journal Issue

Abstract

Döküm hataları tekrar işleme için geçen zaman kaybı ve hurdaya ayrılan malzeme kaybından dolayı dökümhanelere zarar vermektedir. Bu hatalara neden olan faktörleri incelenip düzeltici önlemler alınması hata oranlarını azaltırken verimliliğe de olumlu yönde katkı sağlayacaktır. Bu çalışmanın ana amacı, Yapay Sinir Ağları ve Karar ağaçları analizi tekniklerini kullanarak döküm hatalarını tahminleyen bir hibrid sistem önermektir. Çalışmada ayrıca Yapay sinir Ağları ve Karar ağaçları analizi metodlarının tek başına döküm hataları tahmini için kullanılması ve tahmin performanslarının karşılaştırılması çalışmada yer almaktadır. Modellerin oluşturulmasındaki esas amaç mühendisler ve yöneticiler için döküm parametreleri ve döküm kalitesi hakkında karar verme sürecine yardım edecek bir karar destek sisteminin oluşturulmasıdır.
Casting defects cause losses for a foundry: loss of time for reworked items and loss of material for scrapped unusable products. Investigating the reasons followed by eliminating the causes will reduce the defect percentages and positively contribute to productivity. The main goal of this study is to propose a hybrid model based on experiments by using Artificial Neural Networks (ANN) and Decision Trees (DT) for estimating casting defects. This study also proposes an individual model of ANN and DT for prediction of casting defects and compare the performance of these models. The primary objective is to make use of these models to develop a decision support system for engineers and executives working for describing the relationship between the casting parameters and casting quality .

Description

Keywords

Endüstri ve Endüstri Mühendisliği, Mühendislik Bilimleri, Industrial and Industrial Engineering, Engineering Sciences, İstatistik, Statistics

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

101