Global Energy Preserving Model Reduction for Multi-Symplectic Pdes

dc.authorid Uzunca, Murat/0000-0001-5262-063X
dc.authorid Karasozen, Bulent/0000-0003-1037-5431
dc.authorscopusid 56175645700
dc.authorscopusid 6603369633
dc.authorscopusid 56363624700
dc.authorwosid Uzunca, Murat/P-1166-2018
dc.contributor.author Uzunca, Murat
dc.contributor.author Karasozen, Bulent
dc.contributor.author Aydin, Ayhan
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-05T15:24:23Z
dc.date.available 2024-07-05T15:24:23Z
dc.date.issued 2023
dc.department Atılım University en_US
dc.department-temp [Uzunca, Murat] Sinop Univ, Dept Math, Sinop, Turkiye; [Karasozen, Bulent] Middle East Tech Univ, Inst Appl Math, Ankara, Turkiye; [Karasozen, Bulent] Middle East Tech Univ, Dept Math, Ankara, Turkiye; [Aydin, Ayhan] Atilim Univ, Dept Math, Ankara, Turkiye en_US
dc.description Uzunca, Murat/0000-0001-5262-063X; Karasozen, Bulent/0000-0003-1037-5431 en_US
dc.description.abstract Many Hamiltonian systems can be recast in multi-symplectic form. We develop a reduced -order model (ROM) for multi-symplectic Hamiltonian partial differential equations (PDEs) that preserves the global energy. The full-order solutions are obtained by finite difference discretization in space and the global energy preserving average vector field (AVF) method. The ROM is constructed in the same way as the full-order model (FOM) applying proper orthogonal decomposition (POD) with the Galerkin projection. The reduced-order system has the same structure as the FOM, and preserves the discrete reduced global energy. Ap-plying the discrete empirical interpolation method (DEIM), the reduced-order solutions are computed efficiently in the online stage. A priori error bound is derived for the DEIM ap-proximation to the nonlinear Hamiltonian. The accuracy and computational efficiency of the ROMs are demonstrated for the Korteweg de Vries (KdV) equation, Zakharov-Kuznetzov (ZK) equation, and nonlinear Schrodinger (NLS) equation in multi-symplectic form. Preser-vation of the reduced energies shows that the reduced-order solutions ensure the long-term stability of the solutions.(c) 2022 Elsevier Inc. All rights reserved. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/j.amc.2022.127483
dc.identifier.issn 0096-3003
dc.identifier.issn 1873-5649
dc.identifier.scopus 2-s2.0-85136584284
dc.identifier.uri https://doi.org/10.1016/j.amc.2022.127483
dc.identifier.uri https://hdl.handle.net/20.500.14411/2427
dc.identifier.volume 436 en_US
dc.identifier.wos WOS:000862781400004
dc.identifier.wosquality Q1
dc.institutionauthor Aydın, Ayhan
dc.language.iso en en_US
dc.publisher Elsevier Science inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 4
dc.subject model reduction en_US
dc.subject proper orthogonal decomposition en_US
dc.subject discrete empirical interpolation method en_US
dc.subject Hamiltonian PDE en_US
dc.subject multi-symplecticity en_US
dc.subject energy preservation en_US
dc.title Global Energy Preserving Model Reduction for Multi-Symplectic Pdes en_US
dc.type Article en_US
dc.wos.citedbyCount 3
dspace.entity.type Publication
relation.isAuthorOfPublication 51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isAuthorOfPublication.latestForDiscovery 51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Global energy preserving model reduction formsmor_Rev2.pdf
Size:
1.48 MB
Format:
Adobe Portable Document Format

Collections