<i>q</I>-bernstein Polynomials and Their Iterates
dc.authorscopusid | 35610828900 | |
dc.authorwosid | Ostrovska, Sofiya/AAA-2156-2020 | |
dc.contributor.author | Ostrovska, S | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T15:08:39Z | |
dc.date.available | 2024-07-05T15:08:39Z | |
dc.date.issued | 2003 | |
dc.department | Atılım University | en_US |
dc.department-temp | Atilim Univ, Dept Math, TR-06836 Ankara, Turkey | en_US |
dc.description.abstract | Let B-n (f,q;x), n = 1,2,... be q-Bernstein polynomials of a function f: [0, 1] --> C. The polynomials B-n(f, 1; x) are classical Bernstein polynomials. For q not equal 1 the properties of q-Bernstein polynomials differ essentially from those in the classical case. This paper deals with approximating properties of q-Bernstein polynomials in the case q>1 with respect to both n and q. Some estimates on the rate of convergence are given. In particular, it is proved that for a function f analytic in {z: \z\ < q + ε} the rate of convergence of {B-n(f, q; x)} to f (x) in the norm of C[0, 1] has the order q(-n) (versus 1/n for the classical Bernstein polynomials). Also iterates of q-Bernstein polynomials {B-n(jn) (f, q; x)}, where both n --> infinity and j(n) --> infinity, are studied. It is shown that for q is an element of (0, 1) the asymptotic behavior of such iterates is quite different from the classical case. In particular, the limit does not depend on the rate of j(n) --> infinity. (C) 2003 Elsevier Science (USA). All rights reserved. | en_US |
dc.identifier.citationcount | 169 | |
dc.identifier.doi | 10.1016/S0021-9045(03)00104-7 | |
dc.identifier.endpage | 255 | en_US |
dc.identifier.issn | 0021-9045 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-0043159091 | |
dc.identifier.startpage | 232 | en_US |
dc.identifier.uri | https://doi.org/10.1016/S0021-9045(03)00104-7 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/1076 | |
dc.identifier.volume | 123 | en_US |
dc.identifier.wos | WOS:000184378800006 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Ostrovska, Sofiya | |
dc.language.iso | en | en_US |
dc.publisher | Academic Press inc Elsevier Science | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 183 | |
dc.subject | q-Bernstein polynomials | en_US |
dc.subject | q-integers | en_US |
dc.subject | q-binomial coefficients | en_US |
dc.subject | convergence | en_US |
dc.subject | iterates | en_US |
dc.title | <i>q</I>-bernstein Polynomials and Their Iterates | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 167 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |