Dielectric dispersion in InSe/CdS bilayers

No Thumbnail Available

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science Bv

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Events

Abstract

In the current study, the effect of the amorphous InSe thin film substrate on the structural, optical and dielectric properties of CdS are investigated. The structural analysis of the bilayers indicated a strained growth of CdS onto InSe leading to decrease in grain size and increase in the dislocation density. The optical measurements have shown that the InSe/CdS exhibits two direct allowed transitions energy band gap values of 2.04 and 1.38 eV, in the high and low absorption regions, respectively. On the other hand, the detailed analysis of the dielectric spectra for the InSe, CdS and InSe/CdS layers has shown that the presence of the InSe substrate significantly improves the optical conduction parameters. Particularly, the Drude-Lorentz modeling for these dielectric systems revealed a drift mobility value of 329 cm(2)/V for the InSe/CdS bilayer. The deposition of the CdS onto InSe is also observed to shift the plasmon frequency of CdS from 2.49 to 0.77 GHz. The general features of the InSe/ CdS as plasmon cavities are promising as it shows its usability for production of optoelectronic devices that exhibit high performance at very high frequencies.

Description

Qasrawi, Atef Fayez/0000-0001-8193-6975

Keywords

InSe/CdS, Optical materials, Coating, Dielectric properties, Drude- Lorentz

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Q1

Source

Volume

103

Issue

Start Page

151

End Page

155

Collections