Automata Networks as Preprocessing Technique of Artificial Neural Network in Estimating Primary Production and Dominating Phytoplankton Levels in a Reservoir

dc.authorid Kilic, Hurevren/0000-0002-9058-0365
dc.authorid KILIC, HUREVREN/0000-0003-2647-8451
dc.authorscopusid 16642447800
dc.authorscopusid 7004369411
dc.authorscopusid 7003694907
dc.authorscopusid 6508052706
dc.authorwosid Kilic, Hurevren/F-8253-2012
dc.authorwosid Soyupak, Selçuk/A-9965-2008
dc.authorwosid Kilic, Hurevren/V-4236-2019
dc.contributor.author Kilic, Hurevren
dc.contributor.author Soyupak, Selcuk
dc.contributor.author Gurbuz, Hasan
dc.contributor.author Kivrak, Ersin
dc.contributor.other Computer Engineering
dc.date.accessioned 2024-07-05T15:08:35Z
dc.date.available 2024-07-05T15:08:35Z
dc.date.issued 2006
dc.department Atılım University en_US
dc.department-temp Atilim Univ, Dept Comp Engn, TR-06836 Ankara, Turkey; Atilim Univ, Dept Civil Engn, TR-06836 Ankara, Turkey; Ataturk Univ, Kazimkarabekir Educ Fac, Dept Biol, TR-25240 Erzurum, Turkey en_US
dc.description Kilic, Hurevren/0000-0002-9058-0365; KILIC, HUREVREN/0000-0003-2647-8451 en_US
dc.description.abstract Artificial Neural Networks (ANN) is computational architectures that can be used for estimating primary production levels and dominating phytoplankton species in reservoirs. Automata Networks (AN) were applied as a pre-processing method with subsequent ANN model development for Demirdoven Dam Reservoir. The primary purpose of using preprocessing technique was to distinguish the suitable and appropriate constituents of the input parameters' matrix, to eliminate redundancy, to enhance prediction power and calculation efficiency. The data were collected monthly over two years. The applications have yielded following results: The correlation coefficients (r values) between predicted and observed counts were as high as 0.83, 0.87, 0.83 and 0.88 for Cyclotella ocellata, Sphaerocystis schroeteri, Staurastrum longiradiatum counts, and Chlorophyll-a (Chl-a) concentrations respectively with AN. The performance of AN based pre-processing technique was compared with the performance of a well-known pre-processing technique, namely Principle Component Analysis(PCA), experimentally. r values between the predicted and observed C. ocellata, S. schroeteri and S. longiradiatum counts, and (Chl-a) were as high as 0.80, 0.86, 0.81 and 0.86 respectively with PCA. (c) 2006 Elsevier B.V. All rights reserved. en_US
dc.identifier.citationcount 6
dc.identifier.doi 10.1016/j.ecoinf.2006.09.002
dc.identifier.endpage 439 en_US
dc.identifier.issn 1574-9541
dc.identifier.issn 1878-0512
dc.identifier.issue 4 en_US
dc.identifier.scopus 2-s2.0-37849186103
dc.identifier.scopusquality Q1
dc.identifier.startpage 431 en_US
dc.identifier.uri https://doi.org/10.1016/j.ecoinf.2006.09.002
dc.identifier.uri https://hdl.handle.net/20.500.14411/1053
dc.identifier.volume 1 en_US
dc.identifier.wos WOS:000244894400009
dc.identifier.wosquality Q1
dc.institutionauthor Kılıç, Hürevren
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 5
dc.subject primary production en_US
dc.subject dominating species en_US
dc.subject automata networks en_US
dc.subject artificial neural networks en_US
dc.subject principal component analysis en_US
dc.title Automata Networks as Preprocessing Technique of Artificial Neural Network in Estimating Primary Production and Dominating Phytoplankton Levels in a Reservoir en_US
dc.type Article en_US
dc.wos.citedbyCount 4
dspace.entity.type Publication
relation.isAuthorOfPublication 27e7437e-ade6-4ff4-9395-851c0ee9f537
relation.isAuthorOfPublication.latestForDiscovery 27e7437e-ade6-4ff4-9395-851c0ee9f537
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections