Automata networks as preprocessing technique of artificial neural network in estimating primary production and dominating phytoplankton levels in a reservoir

dc.authoridKilic, Hurevren/0000-0002-9058-0365
dc.authoridKILIC, HUREVREN/0000-0003-2647-8451
dc.authorscopusid16642447800
dc.authorscopusid7004369411
dc.authorscopusid7003694907
dc.authorscopusid6508052706
dc.authorwosidKilic, Hurevren/F-8253-2012
dc.authorwosidSoyupak, Selçuk/A-9965-2008
dc.authorwosidKilic, Hurevren/V-4236-2019
dc.contributor.authorKilic, Hurevren
dc.contributor.authorSoyupak, Selcuk
dc.contributor.authorGurbuz, Hasan
dc.contributor.authorKivrak, Ersin
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-07-05T15:08:35Z
dc.date.available2024-07-05T15:08:35Z
dc.date.issued2006
dc.departmentAtılım Universityen_US
dc.department-tempAtilim Univ, Dept Comp Engn, TR-06836 Ankara, Turkey; Atilim Univ, Dept Civil Engn, TR-06836 Ankara, Turkey; Ataturk Univ, Kazimkarabekir Educ Fac, Dept Biol, TR-25240 Erzurum, Turkeyen_US
dc.descriptionKilic, Hurevren/0000-0002-9058-0365; KILIC, HUREVREN/0000-0003-2647-8451en_US
dc.description.abstractArtificial Neural Networks (ANN) is computational architectures that can be used for estimating primary production levels and dominating phytoplankton species in reservoirs. Automata Networks (AN) were applied as a pre-processing method with subsequent ANN model development for Demirdoven Dam Reservoir. The primary purpose of using preprocessing technique was to distinguish the suitable and appropriate constituents of the input parameters' matrix, to eliminate redundancy, to enhance prediction power and calculation efficiency. The data were collected monthly over two years. The applications have yielded following results: The correlation coefficients (r values) between predicted and observed counts were as high as 0.83, 0.87, 0.83 and 0.88 for Cyclotella ocellata, Sphaerocystis schroeteri, Staurastrum longiradiatum counts, and Chlorophyll-a (Chl-a) concentrations respectively with AN. The performance of AN based pre-processing technique was compared with the performance of a well-known pre-processing technique, namely Principle Component Analysis(PCA), experimentally. r values between the predicted and observed C. ocellata, S. schroeteri and S. longiradiatum counts, and (Chl-a) were as high as 0.80, 0.86, 0.81 and 0.86 respectively with PCA. (c) 2006 Elsevier B.V. All rights reserved.en_US
dc.identifier.citation6
dc.identifier.doi10.1016/j.ecoinf.2006.09.002
dc.identifier.endpage439en_US
dc.identifier.issn1574-9541
dc.identifier.issn1878-0512
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-37849186103
dc.identifier.scopusqualityQ1
dc.identifier.startpage431en_US
dc.identifier.urihttps://doi.org/10.1016/j.ecoinf.2006.09.002
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1053
dc.identifier.volume1en_US
dc.identifier.wosWOS:000244894400009
dc.identifier.wosqualityQ1
dc.institutionauthorKılıç, Hürevren
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectprimary productionen_US
dc.subjectdominating speciesen_US
dc.subjectautomata networksen_US
dc.subjectartificial neural networksen_US
dc.subjectprincipal component analysisen_US
dc.titleAutomata networks as preprocessing technique of artificial neural network in estimating primary production and dominating phytoplankton levels in a reservoiren_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication27e7437e-ade6-4ff4-9395-851c0ee9f537
relation.isAuthorOfPublication.latestForDiscovery27e7437e-ade6-4ff4-9395-851c0ee9f537
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections