Approximation of oscillatory Bessel integral transforms
dc.authorid | Khan, Suliman/0000-0003-0069-4025 | |
dc.authorid | khan, Feroz/0000-0002-7318-4918 | |
dc.authorid | alhazmi, sharifah/0000-0002-7761-4196 | |
dc.authorid | Arshad, Muhammad/0000-0002-4283-0307 | |
dc.authorid | Park, Jongee/0000-0003-1415-6906 | |
dc.authorscopusid | 57216936329 | |
dc.authorscopusid | 57198363991 | |
dc.authorscopusid | 59033796300 | |
dc.authorscopusid | 56127925800 | |
dc.authorscopusid | 57206255401 | |
dc.authorscopusid | 58155971100 | |
dc.authorwosid | Khan, Suliman/IAR-9502-2023 | |
dc.authorwosid | khan, Feroz/JFJ-2466-2023 | |
dc.authorwosid | alhazmi, sharifah/GNP-2031-2022 | |
dc.authorwosid | Arshad, Muhammad/AAL-1102-2020 | |
dc.authorwosid | Park, Jongee/N-9579-2015 | |
dc.contributor.author | Khan, Suliman | |
dc.contributor.author | Zaman, Sakhi | |
dc.contributor.author | Arshad, Muhammad | |
dc.contributor.author | Alhazmi, Sharifah E. | |
dc.contributor.author | Khan, Feroz | |
dc.contributor.author | Park, Jongee | |
dc.contributor.other | Metallurgical and Materials Engineering | |
dc.date.accessioned | 2024-07-05T15:26:39Z | |
dc.date.available | 2024-07-05T15:26:39Z | |
dc.date.issued | 2023 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Khan, Suliman] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Intelligent Mfg & Robot, Dhahran 31261, Saudi Arabia; [Zaman, Sakhi] Univ Engn & Technol, Fac Architecture Allied Sci & Humanities, Peshawar, Pakistan; [Arshad, Muhammad] Abbottabad Univ Sci & Technol, Dept Math, Abbottabad, Pakistan; [Alhazmi, Sharifah E.] Umm Al Qura Univ, Al Qunfudah Univ Coll, Math Dept, Mecca 2438, Saudi Arabia; [Khan, Feroz] Hitec Univ, Taxila, Punjab, Pakistan; [Park, Jongee] Atilim Univ, Dept Met & Mat Engn, TR-06836 Ankara, Turkiye | en_US |
dc.description | Khan, Suliman/0000-0003-0069-4025; khan, Feroz/0000-0002-7318-4918; alhazmi, sharifah/0000-0002-7761-4196; Arshad, Muhammad/0000-0002-4283-0307; Park, Jongee/0000-0003-1415-6906 | en_US |
dc.description.abstract | The numerical treatment of oscillatory integrals is a demanding problem in applied sciences, particularly for large-scale problems. The main concern of this work is on the approximation of oscillatory integrals having Bessel-type kernels with high frequency and large interpolation points. For this purpose, a modified meshless method with compactly supported radial basis functions is implemented in the Levin formulation. The method associates a sparse system matrix even for high frequency values and large data points, and approximates the integrals accurately. The method is efficient and stable than its counterpart methods. Error bounds are derived theoretically and verified with several numerical experiments.(c) 2023 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved. | en_US |
dc.description.sponsorship | Deanship of Scientific Research at Umm Al-Qura University [23UQU4282396DSR002] | en_US |
dc.description.sponsorship | Acknowledgments The author Sharifah E. Alhazmi would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (23UQU4282396DSR002) . | en_US |
dc.identifier.citation | 2 | |
dc.identifier.doi | 10.1016/j.matcom.2023.01.028 | |
dc.identifier.endpage | 744 | en_US |
dc.identifier.issn | 0378-4754 | |
dc.identifier.issn | 1872-7166 | |
dc.identifier.scopus | 2-s2.0-85150821795 | |
dc.identifier.startpage | 727 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.matcom.2023.01.028 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/2575 | |
dc.identifier.volume | 208 | en_US |
dc.identifier.wos | WOS:000946532100001 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Park, Jongee | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Highly oscillatory Bessel integral transforms | en_US |
dc.subject | Compactly supported radial basis functions | en_US |
dc.subject | Stable algorithms | en_US |
dc.subject | Levin method | en_US |
dc.subject | Hybrid functions | en_US |
dc.title | Approximation of oscillatory Bessel integral transforms | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 7ab6b14b-3399-4a47-8d96-e6f7926b54ba | |
relation.isAuthorOfPublication.latestForDiscovery | 7ab6b14b-3399-4a47-8d96-e6f7926b54ba | |
relation.isOrgUnitOfPublication | 7cf7435b-3e8e-404e-adee-0f6f7dc8e070 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 7cf7435b-3e8e-404e-adee-0f6f7dc8e070 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Approximation of oscillatory Bessel integral.pdf
- Size:
- 992.71 KB
- Format:
- Adobe Portable Document Format