Optical Conduction in Amorphous Gase Thin Films

dc.authoridQasrawi, Atef Fayez/0000-0001-8193-6975
dc.authoridKhanfar, Hazem k./0000-0002-3015-4049
dc.authorscopusid6603962677
dc.authorscopusid35778075300
dc.authorscopusid56766039000
dc.authorwosidQasrawi, Atef Fayez/R-4409-2019
dc.authorwosidKhanfar, Hazem k./AAK-7885-2020
dc.contributor.authorQasrawi, A. F.
dc.contributor.authorKhanfar, Hazem. K.
dc.contributor.authorKmail, Renal R. N.
dc.contributor.otherDepartment of Electrical & Electronics Engineering
dc.date.accessioned2024-07-05T14:29:40Z
dc.date.available2024-07-05T14:29:40Z
dc.date.issued2016
dc.departmentAtılım Universityen_US
dc.department-temp[Qasrawi, A. F.; Kmail, Renal R. N.] Arab Amer Univ, Dept Phys, Jenin, Palestine; [Qasrawi, A. F.; Kmail, Renal R. N.] Atilim Univ, Fac Engn, Grp Phys, TR-06836 Ankara, Turkey; [Khanfar, Hazem. K.; Kmail, Renal R. N.] Arab Amer Univ, Dept Telecommun Engn, Jenin, Palestineen_US
dc.descriptionQasrawi, Atef Fayez/0000-0001-8193-6975; Khanfar, Hazem k./0000-0002-3015-4049en_US
dc.description.abstractIn this work, the optical conduction mechanism in GaSe thin films was explored by means of dielectric spectral analysis in the 270-1000 THz range of frequency. The GaSe films which are found to be amorphous in nature are observed to follow the Lorentz approach for optical conduction. The modeling of the optical conductivity which takes into account the damped electronic motion resulting from the collision of photogenerated carriers with impurities, phonons and other damping sources allowed determining the optical conduction parameters. Particularly, an average carrier scattering time, a free carrier density, a reduced resonant frequency, a field effect mobility and an electron bounded plasma frequency of 0.142 (fs), 1.7 x 10(19) (cm(-3)), 875.8 (THz), 1.25 (cm(2)/Vs) and 82.8 (THz), respectively, were determined. These parameters are promising as they indicate the applicability of GaSe in the technology of mid-infrared plasmonic nanoantennas. In addition, the dielectric optical signal which displayed a resonance peak at 500 THz seems to be attractive for use in passive modes operating optoelectronic devices like field effect transistors as they exhibit an increasing signal quality factor with decreasing incident light frequency (C) 2016 Elsevier GmbH. All rights reserved.en_US
dc.description.sponsorshipscientific research council of The Arab American University-Jenin (AAUJ), Palestine; AAUJ [2014-2015 Cycle II]en_US
dc.description.sponsorshipThe authors would like to thank the scientific research council of The Arab American University-Jenin (AAUJ), Palestine, for the financial support. The work was supported by the AAUJ under the project code (2014-2015 Cycle II).en_US
dc.identifier.citationcount12
dc.identifier.doi10.1016/j.ijleo.2016.03.021
dc.identifier.endpage5195en_US
dc.identifier.issn0030-4026
dc.identifier.issue13en_US
dc.identifier.scopus2-s2.0-84961820306
dc.identifier.startpage5193en_US
dc.identifier.urihttps://doi.org/10.1016/j.ijleo.2016.03.021
dc.identifier.urihttps://hdl.handle.net/20.500.14411/544
dc.identifier.volume127en_US
dc.identifier.wosWOS:000376810000005
dc.identifier.wosqualityQ2
dc.institutionauthorQasrawı, Atef Fayez Hasan
dc.language.isoenen_US
dc.publisherElsevier Gmbhen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount10
dc.subjectThin filmen_US
dc.subjectOptical conductivityen_US
dc.subjectGaSeen_US
dc.subjectPlasma frequencyen_US
dc.titleOptical Conduction in Amorphous Gase Thin Filmsen_US
dc.typeArticleen_US
dc.wos.citedbyCount11
dspace.entity.typePublication
relation.isAuthorOfPublication1138e68c-e06a-4ee2-a5ec-1dd89a3ecc2c
relation.isAuthorOfPublication.latestForDiscovery1138e68c-e06a-4ee2-a5ec-1dd89a3ecc2c
relation.isOrgUnitOfPublicationc3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscoveryc3c9b34a-b165-4cd6-8959-dc25e91e206b

Files

Collections