Optical Conduction in Amorphous Gase Thin Films

dc.contributor.author Qasrawi, A. F.
dc.contributor.author Khanfar, Hazem. K.
dc.contributor.author Kmail, Renal R. N.
dc.contributor.other Department of Electrical & Electronics Engineering
dc.contributor.other 15. Graduate School of Natural and Applied Sciences
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T14:29:40Z
dc.date.available 2024-07-05T14:29:40Z
dc.date.issued 2016
dc.description Qasrawi, Atef Fayez/0000-0001-8193-6975; Khanfar, Hazem k./0000-0002-3015-4049 en_US
dc.description.abstract In this work, the optical conduction mechanism in GaSe thin films was explored by means of dielectric spectral analysis in the 270-1000 THz range of frequency. The GaSe films which are found to be amorphous in nature are observed to follow the Lorentz approach for optical conduction. The modeling of the optical conductivity which takes into account the damped electronic motion resulting from the collision of photogenerated carriers with impurities, phonons and other damping sources allowed determining the optical conduction parameters. Particularly, an average carrier scattering time, a free carrier density, a reduced resonant frequency, a field effect mobility and an electron bounded plasma frequency of 0.142 (fs), 1.7 x 10(19) (cm(-3)), 875.8 (THz), 1.25 (cm(2)/Vs) and 82.8 (THz), respectively, were determined. These parameters are promising as they indicate the applicability of GaSe in the technology of mid-infrared plasmonic nanoantennas. In addition, the dielectric optical signal which displayed a resonance peak at 500 THz seems to be attractive for use in passive modes operating optoelectronic devices like field effect transistors as they exhibit an increasing signal quality factor with decreasing incident light frequency (C) 2016 Elsevier GmbH. All rights reserved. en_US
dc.description.sponsorship scientific research council of The Arab American University-Jenin (AAUJ), Palestine; AAUJ [2014-2015 Cycle II] en_US
dc.description.sponsorship The authors would like to thank the scientific research council of The Arab American University-Jenin (AAUJ), Palestine, for the financial support. The work was supported by the AAUJ under the project code (2014-2015 Cycle II). en_US
dc.identifier.doi 10.1016/j.ijleo.2016.03.021
dc.identifier.issn 0030-4026
dc.identifier.scopus 2-s2.0-84961820306
dc.identifier.uri https://doi.org/10.1016/j.ijleo.2016.03.021
dc.identifier.uri https://hdl.handle.net/20.500.14411/544
dc.language.iso en en_US
dc.publisher Elsevier Gmbh en_US
dc.relation.ispartof Optik
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Thin film en_US
dc.subject Optical conductivity en_US
dc.subject GaSe en_US
dc.subject Plasma frequency en_US
dc.title Optical Conduction in Amorphous Gase Thin Films en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Qasrawi, Atef Fayez/0000-0001-8193-6975
gdc.author.id Khanfar, Hazem k./0000-0002-3015-4049
gdc.author.institutional Qasrawı, Atef Fayez Hasan
gdc.author.scopusid 6603962677
gdc.author.scopusid 35778075300
gdc.author.scopusid 56766039000
gdc.author.wosid Qasrawi, Atef Fayez/R-4409-2019
gdc.author.wosid Khanfar, Hazem k./AAK-7885-2020
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Qasrawi, A. F.; Kmail, Renal R. N.] Arab Amer Univ, Dept Phys, Jenin, Palestine; [Qasrawi, A. F.; Kmail, Renal R. N.] Atilim Univ, Fac Engn, Grp Phys, TR-06836 Ankara, Turkey; [Khanfar, Hazem. K.; Kmail, Renal R. N.] Arab Amer Univ, Dept Telecommun Engn, Jenin, Palestine en_US
gdc.description.endpage 5195 en_US
gdc.description.issue 13 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 5193 en_US
gdc.description.volume 127 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W2293039481
gdc.identifier.wos WOS:000376810000005
gdc.oaire.diamondjournal false
gdc.oaire.impulse 9.0
gdc.oaire.influence 3.2999927E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.066552E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0210 nano-technology
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.fwci 1.129
gdc.openalex.normalizedpercentile 0.48
gdc.opencitations.count 10
gdc.plumx.crossrefcites 9
gdc.plumx.mendeley 11
gdc.plumx.scopuscites 10
gdc.scopus.citedcount 10
gdc.wos.citedcount 11
relation.isAuthorOfPublication 1138e68c-e06a-4ee2-a5ec-1dd89a3ecc2c
relation.isAuthorOfPublication.latestForDiscovery 1138e68c-e06a-4ee2-a5ec-1dd89a3ecc2c
relation.isOrgUnitOfPublication c3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication dff2e5a6-d02d-4bef-8b9e-efebe3919b10
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery c3c9b34a-b165-4cd6-8959-dc25e91e206b

Files

Collections