Daily Pm<sub>10</Sub>, Periodicity and Harmonic Regression Model: the Case of London

dc.contributor.author Okkaoglu, Yasin
dc.contributor.author Akdi, Yilmaz
dc.contributor.author Unlu, Kamil Demirberk
dc.contributor.other Industrial Engineering
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:39:55Z
dc.date.available 2024-07-05T15:39:55Z
dc.date.issued 2020
dc.description Ünlü, Kamil Demirberk/0000-0002-2393-6691 en_US
dc.description.abstract One of the most important and distinguishable features of the climate driven data can be shown as the seasonality. Due to its nature air pollution data may have hourly, daily, weekly, monthly or even seasonal cycles. Many techniques such as non-linear time series analysis, machine learning algorithms and deterministic models, have been used to deal with this non-linear structure. Although, these models can capture the seasonality they can't identify the periodicity. Periodicity is beyond the seasonality, it is the hidden pattern of the time series. In this study, it is aimed to investigate the periodicity of daily Particulate Matter (PM10) of London between the periods 2014 and 2018. PM10 is the particulate matter of which aerodynamic diameter is less than 10 mu m. Firstly, periodogram based unit root test is used to check the stationarity of the investigated data. Afterwards, hidden periodic structure of the data is revealed. It is found that, it has five different cycle periods as 7 days, 25 days, 6 months, a year and 15 months. Lastly, it is shown that harmonic regression performs better in forecasting monthly and daily averages of the data. en_US
dc.identifier.doi 10.1016/j.atmosenv.2020.117755
dc.identifier.issn 1352-2310
dc.identifier.issn 1873-2844
dc.identifier.scopus 2-s2.0-85088215455
dc.identifier.uri https://doi.org/10.1016/j.atmosenv.2020.117755
dc.identifier.uri https://hdl.handle.net/20.500.14411/3249
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.ispartof Atmospheric Environment
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Harmonic regression en_US
dc.subject Periodograms en_US
dc.subject PM10 en_US
dc.subject London en_US
dc.subject Nonlinear time series analysis en_US
dc.subject Air pollution en_US
dc.title Daily Pm<sub>10</Sub>, Periodicity and Harmonic Regression Model: the Case of London en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Ünlü, Kamil Demirberk/0000-0002-2393-6691
gdc.author.institutional Ünlü, Kamil Demirberk
gdc.author.scopusid 57211028441
gdc.author.scopusid 9248321700
gdc.author.scopusid 57210105250
gdc.author.wosid Ünlü, Kamil Demirberk/AAL-5952-2020
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Okkaoglu, Yasin] Univ Southampton, Dept Math Sci, Southampton SO17 1BJ, Hants, England; [Akdi, Yilmaz] Ankara Univ, Dept Stat, TR-06100 Ankara, Turkey; [Unlu, Kamil Demirberk] Atilim Univ, Dept Math, TR-06830 Ankara, Turkey en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 117755
gdc.description.volume 238 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3041368166
gdc.identifier.wos WOS:000558539100020
gdc.oaire.diamondjournal false
gdc.oaire.impulse 15.0
gdc.oaire.influence 3.3533836E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.7067148E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0105 earth and related environmental sciences
gdc.openalex.fwci 1.229
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 17
gdc.plumx.mendeley 22
gdc.plumx.scopuscites 18
gdc.scopus.citedcount 18
gdc.wos.citedcount 17
relation.isAuthorOfPublication b46371b5-7e14-4c8e-a10a-85f150b356b2
relation.isAuthorOfPublication.latestForDiscovery b46371b5-7e14-4c8e-a10a-85f150b356b2
relation.isOrgUnitOfPublication 12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections