Daily Pm<sub>10</Sub>, Periodicity and Harmonic Regression Model: the Case of London

dc.authorid Ünlü, Kamil Demirberk/0000-0002-2393-6691
dc.authorscopusid 57211028441
dc.authorscopusid 9248321700
dc.authorscopusid 57210105250
dc.authorwosid Ünlü, Kamil Demirberk/AAL-5952-2020
dc.contributor.author Okkaoglu, Yasin
dc.contributor.author Akdi, Yilmaz
dc.contributor.author Unlu, Kamil Demirberk
dc.contributor.other Industrial Engineering
dc.date.accessioned 2024-07-05T15:39:55Z
dc.date.available 2024-07-05T15:39:55Z
dc.date.issued 2020
dc.department Atılım University en_US
dc.department-temp [Okkaoglu, Yasin] Univ Southampton, Dept Math Sci, Southampton SO17 1BJ, Hants, England; [Akdi, Yilmaz] Ankara Univ, Dept Stat, TR-06100 Ankara, Turkey; [Unlu, Kamil Demirberk] Atilim Univ, Dept Math, TR-06830 Ankara, Turkey en_US
dc.description Ünlü, Kamil Demirberk/0000-0002-2393-6691 en_US
dc.description.abstract One of the most important and distinguishable features of the climate driven data can be shown as the seasonality. Due to its nature air pollution data may have hourly, daily, weekly, monthly or even seasonal cycles. Many techniques such as non-linear time series analysis, machine learning algorithms and deterministic models, have been used to deal with this non-linear structure. Although, these models can capture the seasonality they can't identify the periodicity. Periodicity is beyond the seasonality, it is the hidden pattern of the time series. In this study, it is aimed to investigate the periodicity of daily Particulate Matter (PM10) of London between the periods 2014 and 2018. PM10 is the particulate matter of which aerodynamic diameter is less than 10 mu m. Firstly, periodogram based unit root test is used to check the stationarity of the investigated data. Afterwards, hidden periodic structure of the data is revealed. It is found that, it has five different cycle periods as 7 days, 25 days, 6 months, a year and 15 months. Lastly, it is shown that harmonic regression performs better in forecasting monthly and daily averages of the data. en_US
dc.identifier.citationcount 14
dc.identifier.doi 10.1016/j.atmosenv.2020.117755
dc.identifier.issn 1352-2310
dc.identifier.issn 1873-2844
dc.identifier.scopus 2-s2.0-85088215455
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.atmosenv.2020.117755
dc.identifier.uri https://hdl.handle.net/20.500.14411/3249
dc.identifier.volume 238 en_US
dc.identifier.wos WOS:000558539100020
dc.identifier.wosquality Q1
dc.institutionauthor Ünlü, Kamil Demirberk
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 18
dc.subject Harmonic regression en_US
dc.subject Periodograms en_US
dc.subject PM10 en_US
dc.subject London en_US
dc.subject Nonlinear time series analysis en_US
dc.subject Air pollution en_US
dc.title Daily Pm<sub>10</Sub>, Periodicity and Harmonic Regression Model: the Case of London en_US
dc.type Article en_US
dc.wos.citedbyCount 17
dspace.entity.type Publication
relation.isAuthorOfPublication b46371b5-7e14-4c8e-a10a-85f150b356b2
relation.isAuthorOfPublication.latestForDiscovery b46371b5-7e14-4c8e-a10a-85f150b356b2
relation.isOrgUnitOfPublication 12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery 12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections