Daily PM<sub>10</sub>, periodicity and harmonic regression model: The case of London

dc.authoridÜnlü, Kamil Demirberk/0000-0002-2393-6691
dc.authorscopusid57211028441
dc.authorscopusid9248321700
dc.authorscopusid57210105250
dc.authorwosidÜnlü, Kamil Demirberk/AAL-5952-2020
dc.contributor.authorOkkaoglu, Yasin
dc.contributor.authorAkdi, Yilmaz
dc.contributor.authorUnlu, Kamil Demirberk
dc.contributor.otherIndustrial Engineering
dc.date.accessioned2024-07-05T15:39:55Z
dc.date.available2024-07-05T15:39:55Z
dc.date.issued2020
dc.departmentAtılım Universityen_US
dc.department-temp[Okkaoglu, Yasin] Univ Southampton, Dept Math Sci, Southampton SO17 1BJ, Hants, England; [Akdi, Yilmaz] Ankara Univ, Dept Stat, TR-06100 Ankara, Turkey; [Unlu, Kamil Demirberk] Atilim Univ, Dept Math, TR-06830 Ankara, Turkeyen_US
dc.descriptionÜnlü, Kamil Demirberk/0000-0002-2393-6691en_US
dc.description.abstractOne of the most important and distinguishable features of the climate driven data can be shown as the seasonality. Due to its nature air pollution data may have hourly, daily, weekly, monthly or even seasonal cycles. Many techniques such as non-linear time series analysis, machine learning algorithms and deterministic models, have been used to deal with this non-linear structure. Although, these models can capture the seasonality they can't identify the periodicity. Periodicity is beyond the seasonality, it is the hidden pattern of the time series. In this study, it is aimed to investigate the periodicity of daily Particulate Matter (PM10) of London between the periods 2014 and 2018. PM10 is the particulate matter of which aerodynamic diameter is less than 10 mu m. Firstly, periodogram based unit root test is used to check the stationarity of the investigated data. Afterwards, hidden periodic structure of the data is revealed. It is found that, it has five different cycle periods as 7 days, 25 days, 6 months, a year and 15 months. Lastly, it is shown that harmonic regression performs better in forecasting monthly and daily averages of the data.en_US
dc.identifier.citation14
dc.identifier.doi10.1016/j.atmosenv.2020.117755
dc.identifier.issn1352-2310
dc.identifier.issn1873-2844
dc.identifier.scopus2-s2.0-85088215455
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.atmosenv.2020.117755
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3249
dc.identifier.volume238en_US
dc.identifier.wosWOS:000558539100020
dc.identifier.wosqualityQ1
dc.institutionauthorÜnlü, Kamil Demirberk
dc.language.isoenen_US
dc.publisherPergamon-elsevier Science Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHarmonic regressionen_US
dc.subjectPeriodogramsen_US
dc.subjectPM10en_US
dc.subjectLondonen_US
dc.subjectNonlinear time series analysisen_US
dc.subjectAir pollutionen_US
dc.titleDaily PM<sub>10</sub>, periodicity and harmonic regression model: The case of Londonen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationb46371b5-7e14-4c8e-a10a-85f150b356b2
relation.isAuthorOfPublication.latestForDiscoveryb46371b5-7e14-4c8e-a10a-85f150b356b2
relation.isOrgUnitOfPublication12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections