Three-Dimensional Modeling of a High Temperature Polymer Electrolyte Membrane Fuel Cell at Different Operation Temperatures
| dc.contributor.author | Caglayan, Dilara Gulcin | |
| dc.contributor.author | Sezgin, Berna | |
| dc.contributor.author | Devrim, Yilser | |
| dc.contributor.author | Eroglu, Inci | |
| dc.contributor.other | Energy Systems Engineering | |
| dc.contributor.other | 06. School Of Engineering | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-07-05T14:29:30Z | |
| dc.date.available | 2024-07-05T14:29:30Z | |
| dc.date.issued | 2016 | |
| dc.description | DEVRIM, YILSER/0000-0001-8430-0702; Eroglu, Inci/0000-0002-6635-3947; Caglayan, Dilara Gulcin/0000-0003-0369-5840 | en_US |
| dc.description.abstract | A three-dimensional model for a high temperature polymer electrolyte membrane (PEM) fuel cell having an active area of 25 cm(2) is developed. Triple mixed serpentine flow channel single cell with phosphoric acid doped polybenzimidazole (FBI) membrane is used in the model. Steady-state, isothermal, single phase assumptions are defined for the system. The model is simulated at different temperatures ranging from 100 to 180 degrees C to investigate the influence of operation temperature on the performance of the cell. It is seen that there is an improvement in the performance of the cell as the operation temperature increases. Experimental data are used to validate the model both for single channel and triple mixed serpentine flow channel. Current density distribution is obtained at different operating voltages. The predicted results show that at high operating voltages the local current density is almost uniform; whereas, decreasing operating voltage causes non-uniformities in the local current density. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved. | en_US |
| dc.identifier.doi | 10.1016/j.ijhydene.2016.03.049 | |
| dc.identifier.issn | 0360-3199 | |
| dc.identifier.issn | 1879-3487 | |
| dc.identifier.scopus | 2-s2.0-84979654233 | |
| dc.identifier.uri | https://doi.org/10.1016/j.ijhydene.2016.03.049 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/527 | |
| dc.language.iso | en | en_US |
| dc.publisher | Pergamon-elsevier Science Ltd | en_US |
| dc.relation.ispartof | 1st International Symposium on Materials for Energy Storage and Conversion (ESC-IS) -- SEP 07-09, 2015 -- Middle E Tech Univ, Ankara, TURKEY | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | High temperature PEM fuel cell | en_US |
| dc.subject | Modeling | en_US |
| dc.subject | Temperature effect | en_US |
| dc.title | Three-Dimensional Modeling of a High Temperature Polymer Electrolyte Membrane Fuel Cell at Different Operation Temperatures | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | DEVRIM, YILSER/0000-0001-8430-0702 | |
| gdc.author.id | Eroglu, Inci/0000-0002-6635-3947 | |
| gdc.author.id | Caglayan, Dilara Gulcin/0000-0003-0369-5840 | |
| gdc.author.institutional | Devrim, Yılser | |
| gdc.author.scopusid | 57188647899 | |
| gdc.author.scopusid | 57188657951 | |
| gdc.author.scopusid | 11139445500 | |
| gdc.author.scopusid | 7004598043 | |
| gdc.author.wosid | Eroglu, Inci/AFS-4724-2022 | |
| gdc.author.wosid | DEVRIM, YILSER/AAF-8790-2019 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | [Caglayan, Dilara Gulcin; Sezgin, Berna; Eroglu, Inci] Middle E Tech Univ, Dept Chem Engn, Univ Mah Dumlupinar Blv, TR-06800 Ankara, Turkey; [Devrim, Yilser] Atilim Univ, Dept Energy Syst Engn, Ankara, Turkey | en_US |
| gdc.description.endpage | 10070 | en_US |
| gdc.description.issue | 23 | en_US |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 10060 | en_US |
| gdc.description.volume | 41 | en_US |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2330060221 | |
| gdc.identifier.wos | WOS:000378359400043 | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 15.0 | |
| gdc.oaire.influence | 5.2480713E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Temperature effect | |
| gdc.oaire.keywords | Modeling | |
| gdc.oaire.keywords | High temperature PEM fuel cell | |
| gdc.oaire.popularity | 2.8464042E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0211 other engineering and technologies | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.fwci | 1.935 | |
| gdc.openalex.normalizedpercentile | 0.82 | |
| gdc.opencitations.count | 49 | |
| gdc.plumx.crossrefcites | 11 | |
| gdc.plumx.mendeley | 67 | |
| gdc.plumx.scopuscites | 55 | |
| gdc.scopus.citedcount | 55 | |
| gdc.wos.citedcount | 42 | |
| relation.isAuthorOfPublication | d9a1d14f-b12f-40ca-a17d-175c6f9c882a | |
| relation.isAuthorOfPublication.latestForDiscovery | d9a1d14f-b12f-40ca-a17d-175c6f9c882a | |
| relation.isOrgUnitOfPublication | 80f84cab-4b75-401b-b4b1-f2ec308f3067 | |
| relation.isOrgUnitOfPublication | 4abda634-67fd-417f-bee6-59c29fc99997 | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 80f84cab-4b75-401b-b4b1-f2ec308f3067 |