Three-Dimensional Modeling of a High Temperature Polymer Electrolyte Membrane Fuel Cell at Different Operation Temperatures

dc.authoridDEVRIM, YILSER/0000-0001-8430-0702
dc.authoridEroglu, Inci/0000-0002-6635-3947
dc.authoridCaglayan, Dilara Gulcin/0000-0003-0369-5840
dc.authorscopusid57188647899
dc.authorscopusid57188657951
dc.authorscopusid11139445500
dc.authorscopusid7004598043
dc.authorwosidEroglu, Inci/AFS-4724-2022
dc.authorwosidDEVRIM, YILSER/AAF-8790-2019
dc.contributor.authorCaglayan, Dilara Gulcin
dc.contributor.authorSezgin, Berna
dc.contributor.authorDevrim, Yilser
dc.contributor.authorEroglu, Inci
dc.contributor.otherEnergy Systems Engineering
dc.date.accessioned2024-07-05T14:29:30Z
dc.date.available2024-07-05T14:29:30Z
dc.date.issued2016
dc.departmentAtılım Universityen_US
dc.department-temp[Caglayan, Dilara Gulcin; Sezgin, Berna; Eroglu, Inci] Middle E Tech Univ, Dept Chem Engn, Univ Mah Dumlupinar Blv, TR-06800 Ankara, Turkey; [Devrim, Yilser] Atilim Univ, Dept Energy Syst Engn, Ankara, Turkeyen_US
dc.descriptionDEVRIM, YILSER/0000-0001-8430-0702; Eroglu, Inci/0000-0002-6635-3947; Caglayan, Dilara Gulcin/0000-0003-0369-5840en_US
dc.description.abstractA three-dimensional model for a high temperature polymer electrolyte membrane (PEM) fuel cell having an active area of 25 cm(2) is developed. Triple mixed serpentine flow channel single cell with phosphoric acid doped polybenzimidazole (FBI) membrane is used in the model. Steady-state, isothermal, single phase assumptions are defined for the system. The model is simulated at different temperatures ranging from 100 to 180 degrees C to investigate the influence of operation temperature on the performance of the cell. It is seen that there is an improvement in the performance of the cell as the operation temperature increases. Experimental data are used to validate the model both for single channel and triple mixed serpentine flow channel. Current density distribution is obtained at different operating voltages. The predicted results show that at high operating voltages the local current density is almost uniform; whereas, decreasing operating voltage causes non-uniformities in the local current density. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.en_US
dc.identifier.citationcount40
dc.identifier.doi10.1016/j.ijhydene.2016.03.049
dc.identifier.endpage10070en_US
dc.identifier.issn0360-3199
dc.identifier.issn1879-3487
dc.identifier.issue23en_US
dc.identifier.scopus2-s2.0-84979654233
dc.identifier.startpage10060en_US
dc.identifier.urihttps://doi.org/10.1016/j.ijhydene.2016.03.049
dc.identifier.urihttps://hdl.handle.net/20.500.14411/527
dc.identifier.volume41en_US
dc.identifier.wosWOS:000378359400043
dc.identifier.wosqualityQ1
dc.institutionauthorDevrim, Yılser
dc.language.isoenen_US
dc.publisherPergamon-elsevier Science Ltden_US
dc.relation.ispartof1st International Symposium on Materials for Energy Storage and Conversion (ESC-IS) -- SEP 07-09, 2015 -- Middle E Tech Univ, Ankara, TURKEYen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount54
dc.subjectHigh temperature PEM fuel cellen_US
dc.subjectModelingen_US
dc.subjectTemperature effecten_US
dc.titleThree-Dimensional Modeling of a High Temperature Polymer Electrolyte Membrane Fuel Cell at Different Operation Temperaturesen_US
dc.typeConference Objecten_US
dc.wos.citedbyCount42
dspace.entity.typePublication
relation.isAuthorOfPublicationd9a1d14f-b12f-40ca-a17d-175c6f9c882a
relation.isAuthorOfPublication.latestForDiscoveryd9a1d14f-b12f-40ca-a17d-175c6f9c882a
relation.isOrgUnitOfPublication80f84cab-4b75-401b-b4b1-f2ec308f3067
relation.isOrgUnitOfPublication.latestForDiscovery80f84cab-4b75-401b-b4b1-f2ec308f3067

Files

Collections