A hybrid approach for selecting material handling equipment in a warehouse

No Thumbnail Available

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis Ltd

Research Projects

Organizational Units

Organizational Unit
Industrial Engineering
(1998)
Industrial Engineering is a field of engineering that develops and applies methods and techniques to design, implement, develop and improve systems comprising of humans, materials, machines, energy and funding. Our department was founded in 1998, and since then, has graduated hundreds of individuals who may compete nationally and internationally into professional life. Accredited by MÜDEK in 2014, our student-centered education continues. In addition to acquiring the knowledge necessary for every Industrial engineer, our students are able to gain professional experience in their desired fields of expertise with a wide array of elective courses, such as E-commerce and ERP, Reliability, Tabulation, or Industrial Engineering Applications in the Energy Sector. With dissertation projects fictionalized on solving real problems at real companies, our students gain experience in the sector, and a wide network of contacts. Our education is supported with ERASMUS programs. With the scientific studies of our competent academic staff published in internationally-renowned magazines, our department ranks with the bests among other universities. IESC, one of the most active student networks at our university, continues to organize extensive, and productive events every year.

Journal Issue

Abstract

Warehouse operations are closely related to material handling activities. Loading, unloading, transporting and picking material constitute a huge part of the activities. In order to handle material properly as well as to contribute value to the material, the operator and the environment, utilizing Material Handling Equipment (MHE) is required. The selection of proper MHEs requires great focus since its consideration is linked to mutli-criteria and multi-objective decision making problems. Here, a hybrid method is proposed to address the MHE selection problem. An approach that integrates the entropy based hierarchical fuzzy Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and Multi-Objective Mixed Integer Linear Programming (MOMILP) is used for seeking the best alternative. The evaluation of alternatives is performed based on both subjective and objective criteria. Subjective weights are derived from a fuzzy Analytic Hierarchy Process (AHP). To deal with objective criteria, the entropy method is adopted to determine the weights, and the integrated weights are also calculated. The alternatives are rated by using fuzzy TOPSIS. For final execution of the selection, an MOMILP model is developed incorporating two goals, namely to minimize the disadvantage of material handling operation and to minimize the total cost of material handling. The AUGMented E-CONtraint method (AUGMECON) is used to solve the model. A case study is given to illustrate the method. The results show the effectiveness of the hybrid method in complex decision making.

Description

Erdebilli, Babek/0000-0001-8860-3903; Saputro, Thomy/0000-0002-6148-1130

Keywords

MHE selection, warehouse operations, MCDM, fuzzy logic, MOMILP

Turkish CoHE Thesis Center URL

Citation

17

WoS Q

Scopus Q

Q1

Source

Volume

11

Issue

1

Start Page

34

End Page

48

Collections