Research Trends on Distance Learning: a Text Mining-Based Literature Review From 2008 To 2018

dc.authorid Cagiltay, Nergiz/0000-0003-0875-9276
dc.authorid GURCAN, Fatih/0000-0001-9915-6686
dc.authorscopusid 57194776706
dc.authorscopusid 16237826800
dc.authorwosid Cagiltay, Nergiz/O-3082-2019
dc.authorwosid GURCAN, Fatih/AAJ-7503-2021
dc.contributor.author Gurcan, Fatih
dc.contributor.author Cagiltay, Nergiz Ercil
dc.contributor.other Software Engineering
dc.date.accessioned 2024-07-05T15:39:56Z
dc.date.available 2024-07-05T15:39:56Z
dc.date.issued 2023
dc.department Atılım University en_US
dc.department-temp [Gurcan, Fatih] Karadeniz Tech Univ, Distance Educ Applicat & Res Ctr, Trabzon, Turkey; [Cagiltay, Nergiz Ercil] Atilim Univ, Software Engn Dept, Ankara, Turkey en_US
dc.description Cagiltay, Nergiz/0000-0003-0875-9276; GURCAN, Fatih/0000-0001-9915-6686 en_US
dc.description.abstract Today's dynamic distance learning environments offer a flexible, comfortable, and lifelong learning experience, independent of space and time. In this way, it also supports and develops existing traditional training programs. The increasing importance of knowledge, skills and learning in today's technological life cycle has led to an increase and diversification of research and applications in distance learning. Accordingly, distance learning literature has a rich content supported by a multidisciplinary background. From this point of view, it is crucial to perceive the research landscape reflecting the general themes and trends studied in the field of distance learning. This study aims at revealing the distance learning research themes and trends by analyzing the 27,735 articles of journal conducted in the last decade. The methodology of the study is based on semantic content analysis implemented by N-gram-based text categorization technique. As a result, 10 main themes are discovered, namely, "System establishment", "Media", "Assessment", "Method", "Content", "Education levels", "Learner", "Research methods", "Interaction-Communication", and "Resource-Material-Tool". In this context, the findings of the study are expected to provide significant insights to guide prospective research and practice in the field and to develop continuous improvements and standards for distance education communities. en_US
dc.identifier.citationcount 25
dc.identifier.doi 10.1080/10494820.2020.1815795
dc.identifier.endpage 1028 en_US
dc.identifier.issn 1049-4820
dc.identifier.issn 1744-5191
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-85090306187
dc.identifier.scopusquality Q1
dc.identifier.startpage 1007 en_US
dc.identifier.uri https://doi.org/10.1080/10494820.2020.1815795
dc.identifier.uri https://hdl.handle.net/20.500.14411/3265
dc.identifier.volume 31 en_US
dc.identifier.wos WOS:000567191500001
dc.identifier.wosquality Q1
dc.institutionauthor Çağıltay, Nergiz
dc.language.iso en en_US
dc.publisher Routledge Journals, Taylor & Francis Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 37
dc.subject Distance learning en_US
dc.subject distance education en_US
dc.subject research themes and trends en_US
dc.subject text mining en_US
dc.subject n-grams en_US
dc.title Research Trends on Distance Learning: a Text Mining-Based Literature Review From 2008 To 2018 en_US
dc.type Article en_US
dc.wos.citedbyCount 30
dspace.entity.type Publication
relation.isAuthorOfPublication c99221fa-e0c9-4b73-9f64-54919fcd3c58
relation.isAuthorOfPublication.latestForDiscovery c99221fa-e0c9-4b73-9f64-54919fcd3c58
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscovery d86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections