Predicting dominant phytoplankton quantities in a reservoir by using neural networks

dc.authorscopusid 7003694907
dc.authorscopusid 6508052706
dc.authorscopusid 7004369411
dc.authorscopusid 6701472321
dc.authorwosid Yerli, Sedat Vahdet/AAZ-3509-2020
dc.authorwosid Soyupak, Selçuk/A-9965-2008
dc.contributor.author Gurbuz, H
dc.contributor.author Kivrak, E
dc.contributor.author Soyupak, S
dc.contributor.author Yerli, SV
dc.date.accessioned 2024-07-05T15:08:38Z
dc.date.available 2024-07-05T15:08:38Z
dc.date.issued 2003
dc.department Atılım University en_US
dc.department-temp Ataturk Univ, Kazim Karabekir Educ Fac, Dept Biol, TR-25240 Erzurum, Turkey; Atilim Univ, Fac Engn, Dept Civil Engn, TR-06836 Ankara, Turkey; Hacettepe Univ, SAL, Dept Biol, TR-06532 Ankara, Turkey en_US
dc.description.abstract The Levenberg-Marquardt algorithm was used to train artificial neural networks to predict the abundance of Cyclotella ocellata Pant. and Cyclotella kutzingiana Thwaites using time, depth, temperature, pH, dissolved oxygen, and electrical conductivity as input parameters for the oligo-mesotrophic Kuzgun Dam Reservoir, Turkey. The data were collected in monthly intervals during two ice-free seasons: between April 2000-November 2000 and April 2001-November 2001. To reduce over-fitting of the neural network based models, we employed single hidden layer networks with early stopping of training. Correlation coefficients, of neural network predictions with measurements of abundance of Cyclotella ocellata Pant. and Cyclotella kutzingiana Thwaites were 0.88 and 0.86, respectively. en_US
dc.identifier.citationcount 25
dc.identifier.doi 10.1023/B:HYDR.0000008513.19329.29
dc.identifier.endpage 141 en_US
dc.identifier.issn 0018-8158
dc.identifier.issn 1573-5117
dc.identifier.issue 1-3 en_US
dc.identifier.scopus 2-s2.0-0347093382
dc.identifier.startpage 133 en_US
dc.identifier.uri https://doi.org/10.1023/B:HYDR.0000008513.19329.29
dc.identifier.uri https://hdl.handle.net/20.500.14411/1070
dc.identifier.volume 504 en_US
dc.identifier.wos WOS:000188316100014
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof 4th International Conference on Reservoir Limnology and Water Quality -- AUG, 2002 -- CESKE BUDEJOVICE, CZECH REPUBLIC en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 21
dc.subject back-propagation en_US
dc.subject mesotrophy en_US
dc.subject neural networks en_US
dc.subject oligotrophy en_US
dc.subject phytoplankton en_US
dc.subject water quality en_US
dc.title Predicting dominant phytoplankton quantities in a reservoir by using neural networks en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 22
dspace.entity.type Publication

Files

Collections