Predicting dominant phytoplankton quantities in a reservoir by using neural networks

dc.contributor.author Gurbuz, H
dc.contributor.author Kivrak, E
dc.contributor.author Soyupak, S
dc.contributor.author Yerli, SV
dc.date.accessioned 2024-07-05T15:08:38Z
dc.date.available 2024-07-05T15:08:38Z
dc.date.issued 2003
dc.description.abstract The Levenberg-Marquardt algorithm was used to train artificial neural networks to predict the abundance of Cyclotella ocellata Pant. and Cyclotella kutzingiana Thwaites using time, depth, temperature, pH, dissolved oxygen, and electrical conductivity as input parameters for the oligo-mesotrophic Kuzgun Dam Reservoir, Turkey. The data were collected in monthly intervals during two ice-free seasons: between April 2000-November 2000 and April 2001-November 2001. To reduce over-fitting of the neural network based models, we employed single hidden layer networks with early stopping of training. Correlation coefficients, of neural network predictions with measurements of abundance of Cyclotella ocellata Pant. and Cyclotella kutzingiana Thwaites were 0.88 and 0.86, respectively. en_US
dc.identifier.doi 10.1023/B:HYDR.0000008513.19329.29
dc.identifier.issn 0018-8158
dc.identifier.issn 1573-5117
dc.identifier.scopus 2-s2.0-0347093382
dc.identifier.uri https://doi.org/10.1023/B:HYDR.0000008513.19329.29
dc.identifier.uri https://hdl.handle.net/20.500.14411/1070
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof 4th International Conference on Reservoir Limnology and Water Quality -- AUG, 2002 -- CESKE BUDEJOVICE, CZECH REPUBLIC en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject back-propagation en_US
dc.subject mesotrophy en_US
dc.subject neural networks en_US
dc.subject oligotrophy en_US
dc.subject phytoplankton en_US
dc.subject water quality en_US
dc.title Predicting dominant phytoplankton quantities in a reservoir by using neural networks en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 7003694907
gdc.author.scopusid 6508052706
gdc.author.scopusid 7004369411
gdc.author.scopusid 6701472321
gdc.author.wosid Yerli, Sedat Vahdet/AAZ-3509-2020
gdc.author.wosid Soyupak, Selçuk/A-9965-2008
gdc.bip.impulseclass C5
gdc.bip.influenceclass C4
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Ataturk Univ, Kazim Karabekir Educ Fac, Dept Biol, TR-25240 Erzurum, Turkey; Atilim Univ, Fac Engn, Dept Civil Engn, TR-06836 Ankara, Turkey; Hacettepe Univ, SAL, Dept Biol, TR-06532 Ankara, Turkey en_US
gdc.description.endpage 141 en_US
gdc.description.issue 1-3 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 133 en_US
gdc.description.volume 504 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2016830458
gdc.identifier.wos WOS:000188316100014
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 3.7794905E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.2999607E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0106 biological sciences
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 1.85535714
gdc.openalex.normalizedpercentile 0.84
gdc.opencitations.count 18
gdc.plumx.crossrefcites 18
gdc.plumx.mendeley 20
gdc.plumx.scopuscites 21
gdc.scopus.citedcount 21
gdc.wos.citedcount 22
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 50be38c5-40c4-4d5f-b8e6-463e9514c6dd

Files

Collections