Empirical Analysis of Change Metrics for Software Fault Prediction

dc.contributor.author Choudhary, Garvit Rajesh
dc.contributor.author Kumar, Sandeep
dc.contributor.author Kumar, Kuldeep
dc.contributor.author Mishra, Alok
dc.contributor.author Catal, Cagatay
dc.contributor.other Software Engineering
dc.date.accessioned 2024-07-05T15:27:29Z
dc.date.available 2024-07-05T15:27:29Z
dc.date.issued 2018
dc.description Mishra, Alok/0000-0003-1275-2050; Kumar, Sandeep/0000-0002-7008-4735; Catal, Cagatay/0000-0003-0959-2930; Kumar, Sandeep/0000-0002-3250-4866; Kumar, Dr Sandeep/0000-0003-0747-6776; Kumar, Kuldeep/0000-0003-1160-9092; Kumar, Sandeep/0000-0001-9633-407X en_US
dc.description.abstract A quality assurance activity, known as software fault prediction, can reduce development costs arid improve software quality. The objective of this study is to investigate change metrics in conjunction with code metrics to improve the performance of fault prediction models. Experimental studies are performed on different versions of Eclipse projects and change metrics are extracted from the GIT repositories. In addition to the existing change metrics, several new change metrics are defined and collected from the Eclipse project repository. Machine learning algorithms are applied in conjunction with the change and source code metrics to build fault prediction models. The classification model with new change metrics performs better than the models using existing change metrics. In this work, the experimental results demonstrate that change metrics have a positive impact on the performance of fault prediction models, and high-performance models can be built with several change metrics. (C) 2018 Elsevier Ltd. All rights reserved. en_US
dc.identifier.doi 10.1016/j.compeleceng.2018.02.043
dc.identifier.issn 0045-7906
dc.identifier.issn 1879-0755
dc.identifier.scopus 2-s2.0-85043332099
dc.identifier.uri https://doi.org/10.1016/j.compeleceng.2018.02.043
dc.identifier.uri https://hdl.handle.net/20.500.14411/2673
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Software fault prediction en_US
dc.subject Eclipse en_US
dc.subject Change log en_US
dc.subject Metrics en_US
dc.subject Software quality en_US
dc.subject Defect prediction en_US
dc.title Empirical Analysis of Change Metrics for Software Fault Prediction en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Mishra, Alok/0000-0003-1275-2050
gdc.author.id Kumar, Sandeep/0000-0002-7008-4735
gdc.author.id Catal, Cagatay/0000-0003-0959-2930
gdc.author.id Kumar, Sandeep/0000-0002-3250-4866
gdc.author.id Kumar, Dr Sandeep/0000-0003-0747-6776
gdc.author.id Kumar, Kuldeep/0000-0003-1160-9092
gdc.author.id Kumar, Sandeep/0000-0001-9633-407X
gdc.author.institutional Mıshra, Alok
gdc.author.scopusid 56021902800
gdc.author.scopusid 57218539729
gdc.author.scopusid 57202765898
gdc.author.scopusid 7201441575
gdc.author.scopusid 22633325800
gdc.author.wosid Mishra, Alok/AAE-2673-2019
gdc.author.wosid Kumar, Sandeep/IWU-7273-2023
gdc.author.wosid Catal, Cagatay/AAF-3929-2019
gdc.author.wosid Kumar, Sandeep/AAW-6570-2020
gdc.author.wosid Kumar, Dr Sandeep/AAW-6313-2020
gdc.author.wosid Kumar, Kuldeep/Y-4439-2019
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Choudhary, Garvit Rajesh] Google Inc, Mountain View, CA USA; [Kumar, Sandeep] Indian Inst Technol Roorkee, Dept Comp Sci & Engn, Roorkee, Uttar Pradesh, India; [Kumar, Kuldeep] Dr BR Ambedkar Natl Inst Technol Jalandhar, Dept Comp Sci & Engn, Jalandhar, Punjab, India; [Mishra, Alok] Atilim Univ, Dept Software Engn, Ankara, Turkey; [Catal, Cagatay] Wageningen Univ, Informat Technol Grp, Wageningen, Netherlands en_US
gdc.description.endpage 24 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 15 en_US
gdc.description.volume 67 en_US
gdc.description.wosquality Q2
gdc.identifier.wos WOS:000441483000002
gdc.scopus.citedcount 75
gdc.wos.citedcount 45
relation.isAuthorOfPublication de97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isAuthorOfPublication.latestForDiscovery de97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscovery d86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections