Empirical Analysis of Change Metrics for Software Fault Prediction

dc.authorid Mishra, Alok/0000-0003-1275-2050
dc.authorid Kumar, Sandeep/0000-0002-7008-4735
dc.authorid Catal, Cagatay/0000-0003-0959-2930
dc.authorid Kumar, Sandeep/0000-0002-3250-4866
dc.authorid Kumar, Dr Sandeep/0000-0003-0747-6776
dc.authorid Kumar, Kuldeep/0000-0003-1160-9092
dc.authorid Kumar, Sandeep/0000-0001-9633-407X
dc.authorscopusid 56021902800
dc.authorscopusid 57218539729
dc.authorscopusid 57202765898
dc.authorscopusid 7201441575
dc.authorscopusid 22633325800
dc.authorwosid Mishra, Alok/AAE-2673-2019
dc.authorwosid Kumar, Sandeep/IWU-7273-2023
dc.authorwosid Catal, Cagatay/AAF-3929-2019
dc.authorwosid Kumar, Sandeep/AAW-6570-2020
dc.authorwosid Kumar, Dr Sandeep/AAW-6313-2020
dc.authorwosid Kumar, Kuldeep/Y-4439-2019
dc.contributor.author Choudhary, Garvit Rajesh
dc.contributor.author Kumar, Sandeep
dc.contributor.author Kumar, Kuldeep
dc.contributor.author Mishra, Alok
dc.contributor.author Catal, Cagatay
dc.contributor.other Software Engineering
dc.date.accessioned 2024-07-05T15:27:29Z
dc.date.available 2024-07-05T15:27:29Z
dc.date.issued 2018
dc.department Atılım University en_US
dc.department-temp [Choudhary, Garvit Rajesh] Google Inc, Mountain View, CA USA; [Kumar, Sandeep] Indian Inst Technol Roorkee, Dept Comp Sci & Engn, Roorkee, Uttar Pradesh, India; [Kumar, Kuldeep] Dr BR Ambedkar Natl Inst Technol Jalandhar, Dept Comp Sci & Engn, Jalandhar, Punjab, India; [Mishra, Alok] Atilim Univ, Dept Software Engn, Ankara, Turkey; [Catal, Cagatay] Wageningen Univ, Informat Technol Grp, Wageningen, Netherlands en_US
dc.description Mishra, Alok/0000-0003-1275-2050; Kumar, Sandeep/0000-0002-7008-4735; Catal, Cagatay/0000-0003-0959-2930; Kumar, Sandeep/0000-0002-3250-4866; Kumar, Dr Sandeep/0000-0003-0747-6776; Kumar, Kuldeep/0000-0003-1160-9092; Kumar, Sandeep/0000-0001-9633-407X en_US
dc.description.abstract A quality assurance activity, known as software fault prediction, can reduce development costs arid improve software quality. The objective of this study is to investigate change metrics in conjunction with code metrics to improve the performance of fault prediction models. Experimental studies are performed on different versions of Eclipse projects and change metrics are extracted from the GIT repositories. In addition to the existing change metrics, several new change metrics are defined and collected from the Eclipse project repository. Machine learning algorithms are applied in conjunction with the change and source code metrics to build fault prediction models. The classification model with new change metrics performs better than the models using existing change metrics. In this work, the experimental results demonstrate that change metrics have a positive impact on the performance of fault prediction models, and high-performance models can be built with several change metrics. (C) 2018 Elsevier Ltd. All rights reserved. en_US
dc.identifier.citationcount 41
dc.identifier.doi 10.1016/j.compeleceng.2018.02.043
dc.identifier.endpage 24 en_US
dc.identifier.issn 0045-7906
dc.identifier.issn 1879-0755
dc.identifier.scopus 2-s2.0-85043332099
dc.identifier.startpage 15 en_US
dc.identifier.uri https://doi.org/10.1016/j.compeleceng.2018.02.043
dc.identifier.uri https://hdl.handle.net/20.500.14411/2673
dc.identifier.volume 67 en_US
dc.identifier.wos WOS:000441483000002
dc.identifier.wosquality Q2
dc.institutionauthor Mıshra, Alok
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 75
dc.subject Software fault prediction en_US
dc.subject Eclipse en_US
dc.subject Change log en_US
dc.subject Metrics en_US
dc.subject Software quality en_US
dc.subject Defect prediction en_US
dc.title Empirical Analysis of Change Metrics for Software Fault Prediction en_US
dc.type Article en_US
dc.wos.citedbyCount 45
dspace.entity.type Publication
relation.isAuthorOfPublication de97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isAuthorOfPublication.latestForDiscovery de97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscovery d86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections