A Survey and Meta-Analysis of Application-Layer Distributed Denial-Of Attack

dc.contributor.author Odusami, Modupe
dc.contributor.author Misra, Sanjay
dc.contributor.author Abayomi-Alli, Olusola
dc.contributor.author Abayomi-Alli, Adebayo
dc.contributor.author Fernandez-Sanz, Luis
dc.contributor.other Computer Engineering
dc.date.accessioned 2024-07-05T15:39:55Z
dc.date.available 2024-07-05T15:39:55Z
dc.date.issued 2020
dc.description Misra, Sanjay/0000-0002-3556-9331; Fernandez-Sanz, Luis/0000-0003-0778-0073; Abayomi-Alli, Olusola/0000-0003-2513-5318; Abayomi-Alli, Adebayo/0000-0002-3875-1606 en_US
dc.description.abstract Background One of the significant attacks targeting the application layer is the distributed denial-of-service (DDoS) attack. It degrades the performance of the server by usurping its resources completely, thereby denying access to legitimate users and causing losses to businesses and organizations. Aim This study aims to investigate existing methodologies for application-layer DDoS (APDDoS) attack defense by using specific measures: detection methods/techniques, attack strategy, and feature exploration of existing APDDoS mechanisms. Methodology The review is carried out on a database search of relevant literature in IEEE Xplore, ACM, Science Direct, Springer, Wiley, and Google Search. The search dates to capture journals and conferences are from 2000 to 2019. Review papers that are not in English and not addressing the APDDoS attack are excluded. Three thousand seven hundred eighty-nine studies are identified and streamlined to a total of 75 studies. A quantifiable assessment is performed on the selected articles using six search procedures, namely: source, methods/technique, attack strategy, datasets/corpus, status, detection metric, and feature exploration. Results Based on existing methods/techniques for detection, the results show that machine learning gave the highest proportion with 36%. However, assessment based on attack strategy shows that several studies do not consider an attack form for deploying their solution. Result based on existing features for the APDDoS detection technique shows request stream during a user session and packet pattern gave the highest result with 47%. Unlike packet header information with 33%, request stream during absolute time interval with 12% and web user features 8%. Conclusion Research findings show that a large proportion of the solutions for APDDoS attack detection utilized features based on request stream during user session and packet pattern. The optimization of features will improve detection accuracy. Our study concludes that researchers need to exploit all attack strategies using deep learning algorithms, thus enhancing effective detection of APDDoS attack launch from different botnets. en_US
dc.identifier.doi 10.1002/dac.4603
dc.identifier.issn 1074-5351
dc.identifier.issn 1099-1131
dc.identifier.scopus 2-s2.0-85091608271
dc.identifier.uri https://doi.org/10.1002/dac.4603
dc.identifier.uri https://hdl.handle.net/20.500.14411/3257
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject application-layer DDoS en_US
dc.subject application-layer flooding attack en_US
dc.subject DDoS attack en_US
dc.subject extensive review en_US
dc.subject network security en_US
dc.title A Survey and Meta-Analysis of Application-Layer Distributed Denial-Of Attack en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Misra, Sanjay/0000-0002-3556-9331
gdc.author.id Fernandez-Sanz, Luis/0000-0003-0778-0073
gdc.author.id Abayomi-Alli, Olusola/0000-0003-2513-5318
gdc.author.id Abayomi-Alli, Adebayo/0000-0002-3875-1606
gdc.author.institutional Mısra, Sanjay
gdc.author.scopusid 57200193777
gdc.author.scopusid 56962766700
gdc.author.scopusid 56811478400
gdc.author.scopusid 57218001210
gdc.author.scopusid 25630384100
gdc.author.wosid Misra, Sanjay/K-2203-2014
gdc.author.wosid Fernandez, Luis/KHX-5442-2024
gdc.author.wosid Fernandez-Sanz, Luis/J-4895-2012
gdc.author.wosid Abayomi-Alli, Olusola Oluwakemi/ABC-2838-2021
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Odusami, Modupe; Misra, Sanjay] Covenant Univ, Dept Elect & Informat Engn, Ota, Nigeria; [Misra, Sanjay] Atilim Univ, Dept Comp Engn, Ankara, Turkey; [Abayomi-Alli, Olusola] Kaunas Univ Technol, Dept Software Engn, Kaunas, Lithuania; [Abayomi-Alli, Adebayo] Fed Univ Agr, Dept Comp Sci, Abeokuta, Nigeria; [Fernandez-Sanz, Luis] Univ Alcala De Henares, Dept Comp Sci, Alcala De Henares, Spain en_US
gdc.description.issue 18 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 33 en_US
gdc.description.wosquality Q3
gdc.identifier.wos WOS:000573153300001
gdc.scopus.citedcount 15
gdc.wos.citedcount 9
relation.isAuthorOfPublication 53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscovery 53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections