Prediction of the Onset of Shear Localization Based on Machine Learning

dc.authorid Ulucak, Oguzhan/0000-0002-2063-2553
dc.authorid AKAR, Samet/0000-0002-3202-1362
dc.authorscopusid 57481323900
dc.authorscopusid 58317250900
dc.authorscopusid 57220077206
dc.authorscopusid 57222636605
dc.authorwosid AKAR, Samet/O-2762-2018
dc.contributor.author Akar, Samet
dc.contributor.author Ayli, Ece
dc.contributor.author Ulucak, Oguzhan
dc.contributor.author Ugurer, Doruk
dc.contributor.other Department of Mechanical Engineering
dc.date.accessioned 2024-07-05T15:22:18Z
dc.date.available 2024-07-05T15:22:18Z
dc.date.issued 2023
dc.department Atılım University en_US
dc.department-temp [Akar, Samet; Ayli, Ece] Cankaya Univ, Dept Mech Engn, Ankara, Turkiye; [Ulucak, Oguzhan] TED Univ, Dept Mech Engn, Ankara, Turkiye; [Ugurer, Doruk] Atilim Univ, Dept Mech Engn, Ankara, Turkiye en_US
dc.description Ulucak, Oguzhan/0000-0002-2063-2553; AKAR, Samet/0000-0002-3202-1362 en_US
dc.description.abstract Predicting the onset of shear localization is among the most challenging problems in machining. This phenomenon affects the process outputs, such as machining forces, surface quality, and machined part tolerances. To predict this phenomenon, analytical, experimental, and numerical methods (especially finite element analysis) are widely used. However, the limitations of each method hinder their industrial applications, demanding a reliable and time-saving approach to predict shear localization onset. Additionally, since this phenomenon largely depends on the type and parameters of the constitutive material model, any change in these parameters requires a new set of simulations, which puts further restrictions on the application of finite element modeling. This study aims to overcome the computational efficiency of the finite element method to predict the onset of shear localization when machining Ti6Al4V using machine learning methods. The obtained results demonstrate that the FCM (fuzzy c-means) clustering ANFIS (adaptive network-based fuzzy inference system) has given better results in both training and testing when it is compared to the ANN (artificial neural network) architecture with an R-2 of 0.9981. Regarding this, the FCM-ANFIS is a good candidate to calculate the critical cutting speed. To the best of the authors' knowledge, this is the first study in the literature that uses a machine learning tool to predict shear localization. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1017/S0890060423000136
dc.identifier.issn 0890-0604
dc.identifier.issn 1469-1760
dc.identifier.scopus 2-s2.0-85162137086
dc.identifier.uri https://doi.org/10.1017/S0890060423000136
dc.identifier.uri https://hdl.handle.net/20.500.14411/2179
dc.identifier.volume 37 en_US
dc.identifier.wos WOS:001003007000001
dc.identifier.wosquality Q3
dc.institutionauthor Akar, Samet
dc.language.iso en en_US
dc.publisher Cambridge Univ Press en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject ANFIS exponential en_US
dc.subject ANN en_US
dc.subject finite element method en_US
dc.subject shear localization en_US
dc.subject Ti6Al4V en_US
dc.title Prediction of the Onset of Shear Localization Based on Machine Learning en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication b56a7997-ab77-40fa-b1dc-b6346b76124f
relation.isAuthorOfPublication.latestForDiscovery b56a7997-ab77-40fa-b1dc-b6346b76124f
relation.isOrgUnitOfPublication f77120c2-230c-4f07-9aae-94376b6c4cbb
relation.isOrgUnitOfPublication.latestForDiscovery f77120c2-230c-4f07-9aae-94376b6c4cbb

Files

Collections