Prediction of the onset of shear localization based on machine learning

dc.authoridUlucak, Oguzhan/0000-0002-2063-2553
dc.authoridAKAR, Samet/0000-0002-3202-1362
dc.authorscopusid57481323900
dc.authorscopusid58317250900
dc.authorscopusid57220077206
dc.authorscopusid57222636605
dc.authorwosidAKAR, Samet/O-2762-2018
dc.contributor.authorAkar, Samet
dc.contributor.authorAyli, Ece
dc.contributor.authorUlucak, Oguzhan
dc.contributor.authorUgurer, Doruk
dc.contributor.otherDepartment of Mechanical Engineering
dc.date.accessioned2024-07-05T15:22:18Z
dc.date.available2024-07-05T15:22:18Z
dc.date.issued2023
dc.departmentAtılım Universityen_US
dc.department-temp[Akar, Samet; Ayli, Ece] Cankaya Univ, Dept Mech Engn, Ankara, Turkiye; [Ulucak, Oguzhan] TED Univ, Dept Mech Engn, Ankara, Turkiye; [Ugurer, Doruk] Atilim Univ, Dept Mech Engn, Ankara, Turkiyeen_US
dc.descriptionUlucak, Oguzhan/0000-0002-2063-2553; AKAR, Samet/0000-0002-3202-1362en_US
dc.description.abstractPredicting the onset of shear localization is among the most challenging problems in machining. This phenomenon affects the process outputs, such as machining forces, surface quality, and machined part tolerances. To predict this phenomenon, analytical, experimental, and numerical methods (especially finite element analysis) are widely used. However, the limitations of each method hinder their industrial applications, demanding a reliable and time-saving approach to predict shear localization onset. Additionally, since this phenomenon largely depends on the type and parameters of the constitutive material model, any change in these parameters requires a new set of simulations, which puts further restrictions on the application of finite element modeling. This study aims to overcome the computational efficiency of the finite element method to predict the onset of shear localization when machining Ti6Al4V using machine learning methods. The obtained results demonstrate that the FCM (fuzzy c-means) clustering ANFIS (adaptive network-based fuzzy inference system) has given better results in both training and testing when it is compared to the ANN (artificial neural network) architecture with an R-2 of 0.9981. Regarding this, the FCM-ANFIS is a good candidate to calculate the critical cutting speed. To the best of the authors' knowledge, this is the first study in the literature that uses a machine learning tool to predict shear localization.en_US
dc.identifier.citation0
dc.identifier.doi10.1017/S0890060423000136
dc.identifier.issn0890-0604
dc.identifier.issn1469-1760
dc.identifier.scopus2-s2.0-85162137086
dc.identifier.urihttps://doi.org/10.1017/S0890060423000136
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2179
dc.identifier.volume37en_US
dc.identifier.wosWOS:001003007000001
dc.identifier.wosqualityQ3
dc.institutionauthorAkar, Samet
dc.language.isoenen_US
dc.publisherCambridge Univ Pressen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectANFIS exponentialen_US
dc.subjectANNen_US
dc.subjectfinite element methoden_US
dc.subjectshear localizationen_US
dc.subjectTi6Al4Ven_US
dc.titlePrediction of the onset of shear localization based on machine learningen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationb56a7997-ab77-40fa-b1dc-b6346b76124f
relation.isAuthorOfPublication.latestForDiscoveryb56a7997-ab77-40fa-b1dc-b6346b76124f
relation.isOrgUnitOfPublicationf77120c2-230c-4f07-9aae-94376b6c4cbb
relation.isOrgUnitOfPublication.latestForDiscoveryf77120c2-230c-4f07-9aae-94376b6c4cbb

Files

Collections