Prediction of the Onset of Shear Localization Based on Machine Learning

dc.contributor.author Akar, Samet
dc.contributor.author Ayli, Ece
dc.contributor.author Ulucak, Oguzhan
dc.contributor.author Ugurer, Doruk
dc.date.accessioned 2024-07-05T15:22:18Z
dc.date.available 2024-07-05T15:22:18Z
dc.date.issued 2023
dc.description Ulucak, Oguzhan/0000-0002-2063-2553; AKAR, Samet/0000-0002-3202-1362 en_US
dc.description.abstract Predicting the onset of shear localization is among the most challenging problems in machining. This phenomenon affects the process outputs, such as machining forces, surface quality, and machined part tolerances. To predict this phenomenon, analytical, experimental, and numerical methods (especially finite element analysis) are widely used. However, the limitations of each method hinder their industrial applications, demanding a reliable and time-saving approach to predict shear localization onset. Additionally, since this phenomenon largely depends on the type and parameters of the constitutive material model, any change in these parameters requires a new set of simulations, which puts further restrictions on the application of finite element modeling. This study aims to overcome the computational efficiency of the finite element method to predict the onset of shear localization when machining Ti6Al4V using machine learning methods. The obtained results demonstrate that the FCM (fuzzy c-means) clustering ANFIS (adaptive network-based fuzzy inference system) has given better results in both training and testing when it is compared to the ANN (artificial neural network) architecture with an R-2 of 0.9981. Regarding this, the FCM-ANFIS is a good candidate to calculate the critical cutting speed. To the best of the authors' knowledge, this is the first study in the literature that uses a machine learning tool to predict shear localization. en_US
dc.identifier.doi 10.1017/S0890060423000136
dc.identifier.issn 0890-0604
dc.identifier.issn 1469-1760
dc.identifier.scopus 2-s2.0-85162137086
dc.identifier.uri https://doi.org/10.1017/S0890060423000136
dc.identifier.uri https://hdl.handle.net/20.500.14411/2179
dc.language.iso en en_US
dc.publisher Cambridge Univ Press en_US
dc.relation.ispartof Artificial Intelligence for Engineering Design, Analysis and Manufacturing
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject ANFIS exponential en_US
dc.subject ANN en_US
dc.subject finite element method en_US
dc.subject shear localization en_US
dc.subject Ti6Al4V en_US
dc.title Prediction of the Onset of Shear Localization Based on Machine Learning en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Ulucak, Oguzhan/0000-0002-2063-2553
gdc.author.id AKAR, Samet/0000-0002-3202-1362
gdc.author.scopusid 57481323900
gdc.author.scopusid 58317250900
gdc.author.scopusid 57220077206
gdc.author.scopusid 57222636605
gdc.author.wosid AKAR, Samet/O-2762-2018
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Akar, Samet; Ayli, Ece] Cankaya Univ, Dept Mech Engn, Ankara, Turkiye; [Ulucak, Oguzhan] TED Univ, Dept Mech Engn, Ankara, Turkiye; [Ugurer, Doruk] Atilim Univ, Dept Mech Engn, Ankara, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 37 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4379912874
gdc.identifier.wos WOS:001003007000001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5349236E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.1399287E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.36902224
gdc.openalex.normalizedpercentile 0.49
gdc.opencitations.count 0
gdc.plumx.mendeley 8
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Akar, Samet
gdc.wos.citedcount 1
relation.isAuthorOfPublication b56a7997-ab77-40fa-b1dc-b6346b76124f
relation.isAuthorOfPublication.latestForDiscovery b56a7997-ab77-40fa-b1dc-b6346b76124f
relation.isOrgUnitOfPublication f77120c2-230c-4f07-9aae-94376b6c4cbb
relation.isOrgUnitOfPublication dff2e5a6-d02d-4bef-8b9e-efebe3919b10
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery f77120c2-230c-4f07-9aae-94376b6c4cbb

Files

Collections