Hava Trafik Kontrolörlerinin Stres Seviyelerinin Makine Öğrenme Teknikleriyle Algılanması

Loading...
Thumbnail Image

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

Hava Trafik Kontrolünde olduğu gibi, iletişimin çoğunlukla ses üzerinden sağlandığı ve yoğun stresin iş kalitesini ve dolayısıyla da insan hayatını doğrudan etkileyebildiği koşullarda, stresin tespitinin makinalarla doğru bir şekilde anlaşılması, istenmeyen durumlar için önleyici tedbirler alınabilmesine olanak tanıyacaktır. Bu tez kapsamında, ses üzerinden özellikle mesleki stres altında olduğu düşünülen Hava Trafik Kontrolörlerinin, stres seviyelerinin ölçülmesi amaçlandı. Bu amaçla tez için benzersiz bir veri seti oluşturulup ses özellikleri çıkarıldı ve yapay sinir ağları ile farklı stres düzeylerinin algılanması için sınıflandırma çalışmaları gerçekleştirildi. Yapılan testler sonucunda 26 özellik seçilerek yapılan testlerde ortalama başarım, yapay sinir ağları kullanıldığında %31.2, destek vektör makinaları kullanıldığında ise %25.9'dır.
An accurate understanding of stress detection with machines will allow preventive measures to be taken for undesirable situations, such as in air traffic control, where communication is mostly through sound and intense stress can directly affect the quality of work and hence human life. Within the scope of this thesis, it was aimed to measure the stress levels of Air Traffic Controllers, which are considered to be under occupational stress, from their speeches on duty. For this purpose, a unique data set was created for the thesis, sound features were extracted and classification studies were carried out with artificial neural networks. As a result of the tests, the average performance for 26 features was 31.2% for NN and 25.9% for SVM.

Description

Keywords

Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering, Sivil Havacılık, Civil Aviation

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

90

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

SDG data is not available