Analytical properties of the Lupas <i>q</i>-transform

dc.authorscopusid35610828900
dc.authorwosidOstrovska, Sofiya/AAA-2156-2020
dc.contributor.authorOstrovska, Sofiya
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T14:27:53Z
dc.date.available2024-07-05T14:27:53Z
dc.date.issued2012
dc.departmentAtılım Universityen_US
dc.department-tempAtilim Univ, Dept Math, TR-06836 Ankara, Turkeyen_US
dc.description.abstractThe Lupas q-transform emerges in the study of the limit q-Lupas operator. The latter comes out naturally as a limit for a sequence of the Lupas q-analogues of the Bernstein operator. Given q is an element of (0, 1), f is an element of C left perpendicular0, 1right perpendicular, the q-Lupas transform off is defined by (Lambda(q)f) (z) := 1/(-z; q)(infinity) . Sigma(infinity)(k=0) f(1 - q(k))q(k(k -1)/2)/(q; q)(k)z(k). The transform is closely related to both the q-deformed Poisson probability distribution, which is used widely in the q-boson operator calculus, and to Valiron's method of summation for divergent series. In general, Lambda(q)f is a meromorphic function whose poles are contained in the set J(q) := {-q(-j)}(j=0)(infinity). In this paper, we study the connection between the behaviour of f on leftperpendicular0, 1right perpendicular and the decay of Lambda(q)f as z -> infinity. (C) 2012 Elsevier Inc. All rights reserved.en_US
dc.identifier.citation5
dc.identifier.doi10.1016/j.jmaa.2012.04.047
dc.identifier.endpage185en_US
dc.identifier.issn0022-247X
dc.identifier.issn1096-0813
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-84861676281
dc.identifier.scopusqualityQ2
dc.identifier.startpage177en_US
dc.identifier.urihttps://doi.org/10.1016/j.jmaa.2012.04.047
dc.identifier.urihttps://hdl.handle.net/20.500.14411/322
dc.identifier.volume394en_US
dc.identifier.wosWOS:000305312500015
dc.identifier.wosqualityQ2
dc.institutionauthorOstrovska, Sofiya
dc.language.isoenen_US
dc.publisherAcademic Press inc Elsevier Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectq-integersen_US
dc.subjectq-binomial theoremen_US
dc.subjectLupas q-analogue of the Bernstein operatoren_US
dc.subjectLupas q-transformen_US
dc.subjectAnalytic functionen_US
dc.subjectMeromorphic functionen_US
dc.titleAnalytical properties of the Lupas <i>q</i>-transformen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscoveryaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections