Analytical properties of the Lupas <i>q</i>-transform
dc.authorscopusid | 35610828900 | |
dc.authorwosid | Ostrovska, Sofiya/AAA-2156-2020 | |
dc.contributor.author | Ostrovska, Sofiya | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T14:27:53Z | |
dc.date.available | 2024-07-05T14:27:53Z | |
dc.date.issued | 2012 | |
dc.department | Atılım University | en_US |
dc.department-temp | Atilim Univ, Dept Math, TR-06836 Ankara, Turkey | en_US |
dc.description.abstract | The Lupas q-transform emerges in the study of the limit q-Lupas operator. The latter comes out naturally as a limit for a sequence of the Lupas q-analogues of the Bernstein operator. Given q is an element of (0, 1), f is an element of C left perpendicular0, 1right perpendicular, the q-Lupas transform off is defined by (Lambda(q)f) (z) := 1/(-z; q)(infinity) . Sigma(infinity)(k=0) f(1 - q(k))q(k(k -1)/2)/(q; q)(k)z(k). The transform is closely related to both the q-deformed Poisson probability distribution, which is used widely in the q-boson operator calculus, and to Valiron's method of summation for divergent series. In general, Lambda(q)f is a meromorphic function whose poles are contained in the set J(q) := {-q(-j)}(j=0)(infinity). In this paper, we study the connection between the behaviour of f on leftperpendicular0, 1right perpendicular and the decay of Lambda(q)f as z -> infinity. (C) 2012 Elsevier Inc. All rights reserved. | en_US |
dc.identifier.citation | 5 | |
dc.identifier.doi | 10.1016/j.jmaa.2012.04.047 | |
dc.identifier.endpage | 185 | en_US |
dc.identifier.issn | 0022-247X | |
dc.identifier.issn | 1096-0813 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-84861676281 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 177 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.jmaa.2012.04.047 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/322 | |
dc.identifier.volume | 394 | en_US |
dc.identifier.wos | WOS:000305312500015 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Ostrovska, Sofiya | |
dc.language.iso | en | en_US |
dc.publisher | Academic Press inc Elsevier Science | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | q-integers | en_US |
dc.subject | q-binomial theorem | en_US |
dc.subject | Lupas q-analogue of the Bernstein operator | en_US |
dc.subject | Lupas q-transform | en_US |
dc.subject | Analytic function | en_US |
dc.subject | Meromorphic function | en_US |
dc.title | Analytical properties of the Lupas <i>q</i>-transform | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |