Analytical Properties of the Lupas <i>q</I>-transform

dc.contributor.author Ostrovska, Sofiya
dc.contributor.other Mathematics
dc.contributor.other 02. School of Arts and Sciences
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T14:27:53Z
dc.date.available 2024-07-05T14:27:53Z
dc.date.issued 2012
dc.description.abstract The Lupas q-transform emerges in the study of the limit q-Lupas operator. The latter comes out naturally as a limit for a sequence of the Lupas q-analogues of the Bernstein operator. Given q is an element of (0, 1), f is an element of C left perpendicular0, 1right perpendicular, the q-Lupas transform off is defined by (Lambda(q)f) (z) := 1/(-z; q)(infinity) . Sigma(infinity)(k=0) f(1 - q(k))q(k(k -1)/2)/(q; q)(k)z(k). The transform is closely related to both the q-deformed Poisson probability distribution, which is used widely in the q-boson operator calculus, and to Valiron's method of summation for divergent series. In general, Lambda(q)f is a meromorphic function whose poles are contained in the set J(q) := {-q(-j)}(j=0)(infinity). In this paper, we study the connection between the behaviour of f on leftperpendicular0, 1right perpendicular and the decay of Lambda(q)f as z -> infinity. (C) 2012 Elsevier Inc. All rights reserved. en_US
dc.identifier.doi 10.1016/j.jmaa.2012.04.047
dc.identifier.issn 0022-247X
dc.identifier.issn 1096-0813
dc.identifier.scopus 2-s2.0-84861676281
dc.identifier.uri https://doi.org/10.1016/j.jmaa.2012.04.047
dc.identifier.uri https://hdl.handle.net/20.500.14411/322
dc.language.iso en en_US
dc.publisher Academic Press inc Elsevier Science en_US
dc.relation.ispartof Journal of Mathematical Analysis and Applications
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject q-integers en_US
dc.subject q-binomial theorem en_US
dc.subject Lupas q-analogue of the Bernstein operator en_US
dc.subject Lupas q-transform en_US
dc.subject Analytic function en_US
dc.subject Meromorphic function en_US
dc.title Analytical Properties of the Lupas <i>q</I>-transform en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Ostrovska, Sofiya
gdc.author.scopusid 35610828900
gdc.author.wosid Ostrovska, Sofiya/AAA-2156-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
gdc.description.endpage 185 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 177 en_US
gdc.description.volume 394 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W2091223759
gdc.identifier.wos WOS:000305312500015
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.9394476E-9
gdc.oaire.isgreen false
gdc.oaire.keywords q-integers
gdc.oaire.keywords Analytic function
gdc.oaire.keywords q-binomial theorem
gdc.oaire.keywords Meromorphic function
gdc.oaire.keywords Lupaş q-transform
gdc.oaire.keywords Lupaş q-analogue of the Bernstein operator
gdc.oaire.popularity 1.4403035E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.fwci 0.228
gdc.openalex.normalizedpercentile 0.5
gdc.opencitations.count 3
gdc.plumx.crossrefcites 2
gdc.plumx.scopuscites 5
gdc.scopus.citedcount 5
gdc.wos.citedcount 5
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscovery af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections