The Saturation of Convergence for the Complex <i>q</I>-durrmeyer Polynomials

dc.contributor.author Gurel, Ovgu
dc.contributor.author Ostrovska, Sofiya
dc.contributor.author Turan, Mehmet
dc.date.accessioned 2025-01-05T18:25:45Z
dc.date.available 2025-01-05T18:25:45Z
dc.date.issued 2025
dc.description.abstract The aim of this paper is to establish a saturation result for the complex q-Durrmeyer polynomials (Dn,qf)(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(D_{n,q}f)(z)$$\end{document}, where q is an element of(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \in (0,1)$$\end{document}, f is an element of C[0,1].\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in C[0,1].$$\end{document} It is known that the sequence {(Dn,qf)(z)}n is an element of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{(D_{n,q}f)(z)\}_{n \in {\mathbb {N}}}$$\end{document} converges uniformly on any compact set in C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}$$\end{document} to the limit function (D infinity,qf)(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(D_{\infty ,q}f)(z)$$\end{document}, which, therefore, is entire. Previously, the rate of this convergence has been estimated as O(qn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(q<^>n)$$\end{document}, n ->infinity.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \rightarrow \infty . $$\end{document} In the present article, this result is refined to derive Voronovskaya-type formula and to demonstrate that this rate is o(qn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(q<^>n)$$\end{document}, n ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \rightarrow \infty $$\end{document} on a set possessing an accumulation point if and only if f takes on the same value at all qj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q<^>j$$\end{document}, j is an element of N0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j \in {\mathbb {N}}_{0}$$\end{document}. en_US
dc.identifier.doi 10.1007/s00009-024-02769-z
dc.identifier.issn 1660-5446
dc.identifier.issn 1660-5454
dc.identifier.scopus 2-s2.0-85213016280
dc.identifier.uri https://doi.org/10.1007/s00009-024-02769-z
dc.identifier.uri https://hdl.handle.net/20.500.14411/10371
dc.language.iso en en_US
dc.publisher Springer Basel Ag en_US
dc.relation.ispartof Mediterranean Journal of Mathematics
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject <Italic>Q</Italic>-Integers en_US
dc.subject <Italic>Q</Italic>-Durrmeyer Operator en_US
dc.subject Limit <Italic>Q</Italic>-Durrmeyer Operator en_US
dc.subject Saturation Of Convergence en_US
dc.subject Analytic Function en_US
dc.title The Saturation of Convergence for the Complex <i>q</I>-durrmeyer Polynomials en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57204587566
gdc.author.scopusid 35610828900
gdc.author.scopusid 35782583700
gdc.author.wosid Turan, Mehmet/JYQ-4459-2024
gdc.author.wosid Ostrovska, Sofiya/AAA-2156-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Gurel, Ovgu] Recep Tayyip Erdogan Univ, Dept Math, TR-53100 Rize, Turkiye; [Ostrovska, Sofiya; Turan, Mehmet] Atilim Univ, Dept Math, TR-06830 Ankara, Turkiye en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 22 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4405317750
gdc.identifier.wos WOS:001376061800002
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.keywords \(q\)-integers
gdc.oaire.keywords \(q\)-Durrmeyer operator
gdc.oaire.keywords Rate of convergence, degree of approximation
gdc.oaire.keywords saturation of convergence
gdc.oaire.keywords Approximation in the complex plane
gdc.oaire.keywords analytic function
gdc.oaire.popularity 2.3737945E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 1.53290046
gdc.openalex.normalizedpercentile 0.78
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Ostrovska, Sofiya
gdc.virtual.author Turan, Mehmet
gdc.wos.citedcount 0
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication 5010d3f8-f1f2-4750-b086-e5b5edacaef7
relation.isAuthorOfPublication.latestForDiscovery af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections