Wong type oscillation criteria for nonlinear impulsive differential equations
dc.authorid | Zafer, Agacik/0000-0001-8446-1223 | |
dc.authorid | Doğru Akgöl, Sibel/0000-0003-3513-1046 | |
dc.authorscopusid | 57195267165 | |
dc.authorscopusid | 56550216700 | |
dc.authorwosid | Zafer, Agacik/A-1011-2009 | |
dc.authorwosid | Doğru Akgöl, Sibel/AAL-5957-2020 | |
dc.contributor.author | Akgol, Sibel D. | |
dc.contributor.author | Zafer, Agacik | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T15:24:03Z | |
dc.date.available | 2024-07-05T15:24:03Z | |
dc.date.issued | 2023 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Akgol, Sibel D.] Atilim Univ, Dept Math, Ankara, Turkey; [Zafer, Agacik] Amer Univ Middle East, Coll Engn & Technol, Egaila 54200, Kuwait | en_US |
dc.description | Zafer, Agacik/0000-0001-8446-1223; Doğru Akgöl, Sibel/0000-0003-3513-1046 | en_US |
dc.description.abstract | We present Wong-type oscillation criteria for nonlinear impulsive differential equations having discontinuous solutions and involving both negative and positive coefficients. We use a technique that involves the use of a nonprincipal solution of the associated linear homogeneous equation. The existence of principal and nonpricipal solutions was recently obtained by the present authors. As in special cases, we have superlinear and sublinear Emden-Fowler equations under impulse effects. It is shown that the oscillatory behavior may change due to impulses. An example is also given to illustrate the importance of the results. | en_US |
dc.identifier.citation | 1 | |
dc.identifier.doi | 10.1002/mma.8812 | |
dc.identifier.endpage | 4941 | en_US |
dc.identifier.issn | 0170-4214 | |
dc.identifier.issn | 1099-1476 | |
dc.identifier.issue | 5 | en_US |
dc.identifier.scopus | 2-s2.0-85141391928 | |
dc.identifier.startpage | 4927 | en_US |
dc.identifier.uri | https://doi.org/10.1002/mma.8812 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/2380 | |
dc.identifier.volume | 46 | en_US |
dc.identifier.wos | WOS:000875669100001 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Akgöl, Sibel Doğru | |
dc.language.iso | en | en_US |
dc.publisher | Wiley | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | impulsive differential equation | en_US |
dc.subject | nonlinear | en_US |
dc.subject | nonprincipal solution | en_US |
dc.subject | oscillation | en_US |
dc.subject | second-order | en_US |
dc.title | Wong type oscillation criteria for nonlinear impulsive differential equations | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 60dce3c9-1e8f-4cc2-b325-395b18317084 | |
relation.isAuthorOfPublication.latestForDiscovery | 60dce3c9-1e8f-4cc2-b325-395b18317084 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- WONG TYPE OSCILLATIONmmas2023AutVer..pdf
- Size:
- 1 MB
- Format:
- Adobe Portable Document Format