Wong type oscillation criteria for nonlinear impulsive differential equations

dc.authoridZafer, Agacik/0000-0001-8446-1223
dc.authoridDoğru Akgöl, Sibel/0000-0003-3513-1046
dc.authorscopusid57195267165
dc.authorscopusid56550216700
dc.authorwosidZafer, Agacik/A-1011-2009
dc.authorwosidDoğru Akgöl, Sibel/AAL-5957-2020
dc.contributor.authorAkgol, Sibel D.
dc.contributor.authorZafer, Agacik
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T15:24:03Z
dc.date.available2024-07-05T15:24:03Z
dc.date.issued2023
dc.departmentAtılım Universityen_US
dc.department-temp[Akgol, Sibel D.] Atilim Univ, Dept Math, Ankara, Turkey; [Zafer, Agacik] Amer Univ Middle East, Coll Engn & Technol, Egaila 54200, Kuwaiten_US
dc.descriptionZafer, Agacik/0000-0001-8446-1223; Doğru Akgöl, Sibel/0000-0003-3513-1046en_US
dc.description.abstractWe present Wong-type oscillation criteria for nonlinear impulsive differential equations having discontinuous solutions and involving both negative and positive coefficients. We use a technique that involves the use of a nonprincipal solution of the associated linear homogeneous equation. The existence of principal and nonpricipal solutions was recently obtained by the present authors. As in special cases, we have superlinear and sublinear Emden-Fowler equations under impulse effects. It is shown that the oscillatory behavior may change due to impulses. An example is also given to illustrate the importance of the results.en_US
dc.identifier.citation1
dc.identifier.doi10.1002/mma.8812
dc.identifier.endpage4941en_US
dc.identifier.issn0170-4214
dc.identifier.issn1099-1476
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-85141391928
dc.identifier.startpage4927en_US
dc.identifier.urihttps://doi.org/10.1002/mma.8812
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2380
dc.identifier.volume46en_US
dc.identifier.wosWOS:000875669100001
dc.identifier.wosqualityQ1
dc.institutionauthorAkgöl, Sibel Doğru
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectimpulsive differential equationen_US
dc.subjectnonlinearen_US
dc.subjectnonprincipal solutionen_US
dc.subjectoscillationen_US
dc.subjectsecond-orderen_US
dc.titleWong type oscillation criteria for nonlinear impulsive differential equationsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication60dce3c9-1e8f-4cc2-b325-395b18317084
relation.isAuthorOfPublication.latestForDiscovery60dce3c9-1e8f-4cc2-b325-395b18317084
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
WONG TYPE OSCILLATIONmmas2023AutVer..pdf
Size:
1 MB
Format:
Adobe Portable Document Format

Collections