Curvature of multiply warped products
dc.authorscopusid | 8704767500 | |
dc.authorscopusid | 7005860624 | |
dc.authorwosid | Unal, Bulent/I-7795-2012 | |
dc.contributor.author | Dobarro, F | |
dc.contributor.author | Ünal, B | |
dc.contributor.other | Department of Modern Languages | |
dc.date.accessioned | 2024-07-05T15:09:53Z | |
dc.date.available | 2024-07-05T15:09:53Z | |
dc.date.issued | 2005 | |
dc.department | Atılım University | en_US |
dc.department-temp | Univ Trieste, Dipartimento Matemat & Informat, I-34127 Trieste, Italy; Atilim Univ, Dept Math, TR-06836 Ankara, Turkey | en_US |
dc.description.abstract | In this paper, we study Ricci-flat and Einstein-Lorentzian multiply warped products. We also consider the case of having constant scalar curvatures for this class of warped products. Finally, after we introduce a new class of space-times called as generalized Kasner space-times, we apply our results to this kind of space-times as well as other relativistic space-times, i.e., Reissner-Nordstrom, Kasner space-times, Banados-Teitelboim-Zanelli and de Sitter black hole solutions. (c) 2004 Elsevier B.V. All rights reserved. | en_US |
dc.identifier.citationcount | 68 | |
dc.identifier.doi | 10.1016/j.geomphys.2004.12.001 | |
dc.identifier.endpage | 106 | en_US |
dc.identifier.issn | 0393-0440 | |
dc.identifier.issn | 1879-1662 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-22944478021 | |
dc.identifier.startpage | 75 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.geomphys.2004.12.001 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/1246 | |
dc.identifier.volume | 55 | en_US |
dc.identifier.wos | WOS:000231343600004 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Ünal, Bernis | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 81 | |
dc.subject | warped products | en_US |
dc.subject | Ricci tensor | en_US |
dc.subject | scalar curvature | en_US |
dc.subject | Einstein manifolds | en_US |
dc.title | Curvature of multiply warped products | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 73 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 026b8caa-01cf-445b-8f5d-570620bc37f2 | |
relation.isAuthorOfPublication.latestForDiscovery | 026b8caa-01cf-445b-8f5d-570620bc37f2 | |
relation.isOrgUnitOfPublication | 31554256-c410-403f-9195-717f892be9f7 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31554256-c410-403f-9195-717f892be9f7 |