Best Proximity Points of Cyclic Mappings
dc.authorid | KARAPINAR, ERDAL/0000-0002-6798-3254 | |
dc.authorscopusid | 16678995500 | |
dc.authorwosid | KARAPINAR, ERDAL/H-3177-2011 | |
dc.contributor.author | Karapinar, Erdal | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T14:28:04Z | |
dc.date.available | 2024-07-05T14:28:04Z | |
dc.date.issued | 2012 | |
dc.department | Atılım University | en_US |
dc.department-temp | Atilim Univ, Dept Math, TR-06836 Ankara, Turkey | en_US |
dc.description | KARAPINAR, ERDAL/0000-0002-6798-3254 | en_US |
dc.description.abstract | In this this manuscript, we proved that the existence of best proximity points for the cyclic operators T defined on a union of subsets A, B of a uniformly convex Banach space X with T (A) subset of B, T(B) subset of A and satisfying the condition parallel to Tx - Yy parallel to <= alpha/3[parallel to x-y parallel to + parallel to Tx - x parallel to + parallel to Ty - y parallel to] + (1 - alpha)diam(A, B) for alpha is an element of (0, 1) and for all x is an element of A, for all y is an element of B, where diam(A, B) = inf{parallel to x - y parallel to : x is an element of A, y is an element of B}. (C) 2012 Elsevier Ltd. All rights reserved. | en_US |
dc.identifier.citationcount | 66 | |
dc.identifier.doi | 10.1016/j.aml.2012.02.008 | |
dc.identifier.endpage | 1766 | en_US |
dc.identifier.issn | 0893-9659 | |
dc.identifier.issue | 11 | en_US |
dc.identifier.scopus | 2-s2.0-84865645540 | |
dc.identifier.startpage | 1761 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.aml.2012.02.008 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/342 | |
dc.identifier.volume | 25 | en_US |
dc.identifier.wos | WOS:000307326600034 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Karapınar, Erdal | |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-elsevier Science Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 66 | |
dc.subject | Cyclic contraction | en_US |
dc.subject | Best proximity points | en_US |
dc.subject | Fixed point theory | en_US |
dc.title | Best Proximity Points of Cyclic Mappings | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 69 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 69e25f84-afec-4c79-a19a-1e7811d90143 | |
relation.isAuthorOfPublication.latestForDiscovery | 69e25f84-afec-4c79-a19a-1e7811d90143 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |