Computing Minimal Signature of Coherent Systems Through Matrix-Geometric Distributions
dc.authorid | Tank, Fatih/0000-0003-3758-396X | |
dc.authorid | Eryilmaz, Serkan/0000-0002-2108-1781 | |
dc.authorscopusid | 8203625300 | |
dc.authorscopusid | 12041740200 | |
dc.authorwosid | Tank, Fatih/W-4877-2017 | |
dc.contributor.author | Eryilmaz, Serkan | |
dc.contributor.author | Eryılmaz, Serkan | |
dc.contributor.author | Tank, Fatih | |
dc.contributor.author | Eryılmaz, Serkan | |
dc.contributor.other | Industrial Engineering | |
dc.contributor.other | Industrial Engineering | |
dc.date.accessioned | 2024-07-05T15:17:00Z | |
dc.date.available | 2024-07-05T15:17:00Z | |
dc.date.issued | 2021 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Eryilmaz, Serkan] Atilim Univ, Dept Ind Engn, Ankara, Turkey; [Tank, Fatih] Ankara Univ, Dept Actuarial Sci, Ankara, Turkey | en_US |
dc.description | Tank, Fatih/0000-0003-3758-396X; Eryilmaz, Serkan/0000-0002-2108-1781 | en_US |
dc.description.abstract | Signatures are useful in analyzing and evaluating coherent systems. However, their computation is a challenging problem, especially for complex coherent structures. In most cases the reliability of a binary coherent system can be linked to a tail probability associated with a properly defined waiting time random variable in a sequence of binary trials. In this paper we present a method for computing the minimal signature of a binary coherent system. Our method is based on matrix-geometric distributions. First, a proper matrix-geometric random variable corresponding to the system structure is found. Second, its probability generating function is obtained. Finally, the companion representation for the distribution of matrix-geometric distribution is used to obtain a matrix-based expression for the minimal signature of the coherent system. The results are also extended to a system with two types of components. | en_US |
dc.identifier.citationcount | 1 | |
dc.identifier.doi | 10.1017/jpr.2021.5 | |
dc.identifier.endpage | 636 | en_US |
dc.identifier.issn | 0021-9002 | |
dc.identifier.issn | 1475-6072 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-85115313867 | |
dc.identifier.startpage | 621 | en_US |
dc.identifier.uri | https://doi.org/10.1017/jpr.2021.5 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/1707 | |
dc.identifier.volume | 58 | en_US |
dc.identifier.wos | WOS:000696308000006 | |
dc.identifier.wosquality | Q3 | |
dc.institutionauthor | Eryılmaz, Serkan | |
dc.language.iso | en | en_US |
dc.publisher | Cambridge Univ Press | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 2 | |
dc.subject | Matrix-geometric distribution | en_US |
dc.subject | minimal signature | en_US |
dc.subject | probability generating function | en_US |
dc.subject | reliability | en_US |
dc.subject | signature | en_US |
dc.title | Computing Minimal Signature of Coherent Systems Through Matrix-Geometric Distributions | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 1 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 37862217-5541-47e3-9406-e21aa38e7fdf | |
relation.isAuthorOfPublication | 37862217-5541-47e3-9406-e21aa38e7fdf | |
relation.isAuthorOfPublication | 37862217-5541-47e3-9406-e21aa38e7fdf | |
relation.isAuthorOfPublication.latestForDiscovery | 37862217-5541-47e3-9406-e21aa38e7fdf | |
relation.isOrgUnitOfPublication | 12c9377e-b7fe-4600-8326-f3613a05653d | |
relation.isOrgUnitOfPublication | 12c9377e-b7fe-4600-8326-f3613a05653d | |
relation.isOrgUnitOfPublication.latestForDiscovery | 12c9377e-b7fe-4600-8326-f3613a05653d |