Computing Minimal Signature of Coherent Systems Through Matrix-Geometric Distributions

dc.authoridTank, Fatih/0000-0003-3758-396X
dc.authoridEryilmaz, Serkan/0000-0002-2108-1781
dc.authorscopusid8203625300
dc.authorscopusid12041740200
dc.authorwosidTank, Fatih/W-4877-2017
dc.contributor.authorEryilmaz, Serkan
dc.contributor.authorEryılmaz, Serkan
dc.contributor.authorTank, Fatih
dc.contributor.authorEryılmaz, Serkan
dc.contributor.otherIndustrial Engineering
dc.contributor.otherIndustrial Engineering
dc.date.accessioned2024-07-05T15:17:00Z
dc.date.available2024-07-05T15:17:00Z
dc.date.issued2021
dc.departmentAtılım Universityen_US
dc.department-temp[Eryilmaz, Serkan] Atilim Univ, Dept Ind Engn, Ankara, Turkey; [Tank, Fatih] Ankara Univ, Dept Actuarial Sci, Ankara, Turkeyen_US
dc.descriptionTank, Fatih/0000-0003-3758-396X; Eryilmaz, Serkan/0000-0002-2108-1781en_US
dc.description.abstractSignatures are useful in analyzing and evaluating coherent systems. However, their computation is a challenging problem, especially for complex coherent structures. In most cases the reliability of a binary coherent system can be linked to a tail probability associated with a properly defined waiting time random variable in a sequence of binary trials. In this paper we present a method for computing the minimal signature of a binary coherent system. Our method is based on matrix-geometric distributions. First, a proper matrix-geometric random variable corresponding to the system structure is found. Second, its probability generating function is obtained. Finally, the companion representation for the distribution of matrix-geometric distribution is used to obtain a matrix-based expression for the minimal signature of the coherent system. The results are also extended to a system with two types of components.en_US
dc.identifier.citationcount1
dc.identifier.doi10.1017/jpr.2021.5
dc.identifier.endpage636en_US
dc.identifier.issn0021-9002
dc.identifier.issn1475-6072
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85115313867
dc.identifier.startpage621en_US
dc.identifier.urihttps://doi.org/10.1017/jpr.2021.5
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1707
dc.identifier.volume58en_US
dc.identifier.wosWOS:000696308000006
dc.identifier.wosqualityQ3
dc.institutionauthorEryılmaz, Serkan
dc.language.isoenen_US
dc.publisherCambridge Univ Pressen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount2
dc.subjectMatrix-geometric distributionen_US
dc.subjectminimal signatureen_US
dc.subjectprobability generating functionen_US
dc.subjectreliabilityen_US
dc.subjectsignatureen_US
dc.titleComputing Minimal Signature of Coherent Systems Through Matrix-Geometric Distributionsen_US
dc.typeArticleen_US
dc.wos.citedbyCount1
dspace.entity.typePublication
relation.isAuthorOfPublication37862217-5541-47e3-9406-e21aa38e7fdf
relation.isAuthorOfPublication37862217-5541-47e3-9406-e21aa38e7fdf
relation.isAuthorOfPublication37862217-5541-47e3-9406-e21aa38e7fdf
relation.isAuthorOfPublication.latestForDiscovery37862217-5541-47e3-9406-e21aa38e7fdf
relation.isOrgUnitOfPublication12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections