Computing Minimal Signature of Coherent Systems Through Matrix-Geometric Distributions

dc.authorid Tank, Fatih/0000-0003-3758-396X
dc.authorid Eryilmaz, Serkan/0000-0002-2108-1781
dc.authorscopusid 8203625300
dc.authorscopusid 12041740200
dc.authorwosid Tank, Fatih/W-4877-2017
dc.contributor.author Eryilmaz, Serkan
dc.contributor.author Eryılmaz, Serkan
dc.contributor.author Tank, Fatih
dc.contributor.author Eryılmaz, Serkan
dc.contributor.other Industrial Engineering
dc.contributor.other Industrial Engineering
dc.date.accessioned 2024-07-05T15:17:00Z
dc.date.available 2024-07-05T15:17:00Z
dc.date.issued 2021
dc.department Atılım University en_US
dc.department-temp [Eryilmaz, Serkan] Atilim Univ, Dept Ind Engn, Ankara, Turkey; [Tank, Fatih] Ankara Univ, Dept Actuarial Sci, Ankara, Turkey en_US
dc.description Tank, Fatih/0000-0003-3758-396X; Eryilmaz, Serkan/0000-0002-2108-1781 en_US
dc.description.abstract Signatures are useful in analyzing and evaluating coherent systems. However, their computation is a challenging problem, especially for complex coherent structures. In most cases the reliability of a binary coherent system can be linked to a tail probability associated with a properly defined waiting time random variable in a sequence of binary trials. In this paper we present a method for computing the minimal signature of a binary coherent system. Our method is based on matrix-geometric distributions. First, a proper matrix-geometric random variable corresponding to the system structure is found. Second, its probability generating function is obtained. Finally, the companion representation for the distribution of matrix-geometric distribution is used to obtain a matrix-based expression for the minimal signature of the coherent system. The results are also extended to a system with two types of components. en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.1017/jpr.2021.5
dc.identifier.endpage 636 en_US
dc.identifier.issn 0021-9002
dc.identifier.issn 1475-6072
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-85115313867
dc.identifier.startpage 621 en_US
dc.identifier.uri https://doi.org/10.1017/jpr.2021.5
dc.identifier.uri https://hdl.handle.net/20.500.14411/1707
dc.identifier.volume 58 en_US
dc.identifier.wos WOS:000696308000006
dc.identifier.wosquality Q3
dc.institutionauthor Eryılmaz, Serkan
dc.language.iso en en_US
dc.publisher Cambridge Univ Press en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 2
dc.subject Matrix-geometric distribution en_US
dc.subject minimal signature en_US
dc.subject probability generating function en_US
dc.subject reliability en_US
dc.subject signature en_US
dc.title Computing Minimal Signature of Coherent Systems Through Matrix-Geometric Distributions en_US
dc.type Article en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication 37862217-5541-47e3-9406-e21aa38e7fdf
relation.isAuthorOfPublication 37862217-5541-47e3-9406-e21aa38e7fdf
relation.isAuthorOfPublication 37862217-5541-47e3-9406-e21aa38e7fdf
relation.isAuthorOfPublication.latestForDiscovery 37862217-5541-47e3-9406-e21aa38e7fdf
relation.isOrgUnitOfPublication 12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication 12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery 12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections