The Norm Estimates for The <i>q</I>-bernstein Operator in The Case <i>q</I> > 1
dc.authorscopusid | 35276301700 | |
dc.authorscopusid | 35610828900 | |
dc.authorwosid | Ostrovska, Sofiya/AAA-2156-2020 | |
dc.contributor.author | Wang, Heping | |
dc.contributor.author | Ostrovska, Sofiya | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T15:11:40Z | |
dc.date.available | 2024-07-05T15:11:40Z | |
dc.date.issued | 2010 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Wang, Heping] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China; [Ostrovska, Sofiya] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey | en_US |
dc.description.abstract | The q-Bernstein basis with 0 < q < 1 emerges as an extension of the Bernstein basis corresponding to a stochastic process generalizing Bernoulli trials forming a totally positive system on [0, 1]. In the case q > 1, the behavior of the q-Bernstein basic polynomials on [0, 1] combines the fast increase in magnitude with sign oscillations. This seriously complicates the study of q-Bernstein polynomials in the case of q > 1. The aim of this paper is to present norm estimates in C[0, 1] for the q-Bernstein basic polynomials and the q-Bernstein operator B-n,B-q in the case q > 1. While for 0 < q <= 1, parallel to B-n,B-q parallel to = 1 for all n is an element of N, in the case q > 1, the norm parallel to B-n,B-q parallel to increases rather rapidly as n -> infinity. We prove here that parallel to B-n,B-q parallel to similar to C(q)q(n(n-1)/2)/n, n -> infinity with C-q = 2 (q(-2); q(-2))(infinity)/e. Such a fast growth of norms provides an explanation for the unpredictable behavior of q-Bernstein polynomials (q > 1) with respect to convergence. | en_US |
dc.description.sponsorship | National Natural Science Foundation of China [10871132]; Beijing Natural Science Foundation [1062004]; Beijing Municipal Education Commission [KZ200810028013] | en_US |
dc.description.sponsorship | The first author was supported by National Natural Science Foundation of China (Project no. 10871132), Beijing Natural Science Foundation (1062004), and by a grant from the Key Programs of Beijing Municipal Education Commission (KZ200810028013). | en_US |
dc.identifier.citationcount | 8 | |
dc.identifier.doi | 10.1090/S0025-5718-09-02273-X | |
dc.identifier.endpage | 363 | en_US |
dc.identifier.issn | 0025-5718 | |
dc.identifier.issn | 1088-6842 | |
dc.identifier.issue | 269 | en_US |
dc.identifier.scopus | 2-s2.0-77952826708 | |
dc.identifier.startpage | 353 | en_US |
dc.identifier.uri | https://doi.org/10.1090/S0025-5718-09-02273-X | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/1458 | |
dc.identifier.volume | 79 | en_US |
dc.identifier.wos | WOS:000273718300016 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Ostrovska, Sofiya | |
dc.language.iso | en | en_US |
dc.publisher | Amer Mathematical Soc | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 10 | |
dc.subject | q-integers | en_US |
dc.subject | q-binomial coefficients | en_US |
dc.subject | q-Bernstein polynomials | en_US |
dc.subject | q-Bernstein operator | en_US |
dc.subject | operator norm | en_US |
dc.subject | strong asymptotic order | en_US |
dc.title | The Norm Estimates for The <i>q</I>-bernstein Operator in The Case <i>q</I> > 1 | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 8 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |