The Norm Estimates for The <i>q</I>-bernstein Operator in The Case <i>q</I> &gt; 1

dc.contributor.author Wang, Heping
dc.contributor.author Ostrovska, Sofiya
dc.date.accessioned 2024-07-05T15:11:40Z
dc.date.available 2024-07-05T15:11:40Z
dc.date.issued 2010
dc.description.abstract The q-Bernstein basis with 0 < q < 1 emerges as an extension of the Bernstein basis corresponding to a stochastic process generalizing Bernoulli trials forming a totally positive system on [0, 1]. In the case q > 1, the behavior of the q-Bernstein basic polynomials on [0, 1] combines the fast increase in magnitude with sign oscillations. This seriously complicates the study of q-Bernstein polynomials in the case of q > 1. The aim of this paper is to present norm estimates in C[0, 1] for the q-Bernstein basic polynomials and the q-Bernstein operator B-n,B-q in the case q > 1. While for 0 < q <= 1, parallel to B-n,B-q parallel to = 1 for all n is an element of N, in the case q > 1, the norm parallel to B-n,B-q parallel to increases rather rapidly as n -> infinity. We prove here that parallel to B-n,B-q parallel to similar to C(q)q(n(n-1)/2)/n, n -> infinity with C-q = 2 (q(-2); q(-2))(infinity)/e. Such a fast growth of norms provides an explanation for the unpredictable behavior of q-Bernstein polynomials (q > 1) with respect to convergence. en_US
dc.description.sponsorship National Natural Science Foundation of China [10871132]; Beijing Natural Science Foundation [1062004]; Beijing Municipal Education Commission [KZ200810028013] en_US
dc.description.sponsorship The first author was supported by National Natural Science Foundation of China (Project no. 10871132), Beijing Natural Science Foundation (1062004), and by a grant from the Key Programs of Beijing Municipal Education Commission (KZ200810028013). en_US
dc.identifier.doi 10.1090/S0025-5718-09-02273-X
dc.identifier.issn 0025-5718
dc.identifier.issn 1088-6842
dc.identifier.scopus 2-s2.0-77952826708
dc.identifier.uri https://doi.org/10.1090/S0025-5718-09-02273-X
dc.identifier.uri https://hdl.handle.net/20.500.14411/1458
dc.language.iso en en_US
dc.publisher Amer Mathematical Soc en_US
dc.relation.ispartof Mathematics of Computation
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject q-integers en_US
dc.subject q-binomial coefficients en_US
dc.subject q-Bernstein polynomials en_US
dc.subject q-Bernstein operator en_US
dc.subject operator norm en_US
dc.subject strong asymptotic order en_US
dc.title The Norm Estimates for The <i>q</I>-bernstein Operator in The Case <i>q</I> &gt; 1 en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 35276301700
gdc.author.scopusid 35610828900
gdc.author.wosid Ostrovska, Sofiya/AAA-2156-2020
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Wang, Heping] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China; [Ostrovska, Sofiya] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
gdc.description.endpage 363 en_US
gdc.description.issue 269 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 353 en_US
gdc.description.volume 79 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2061536381
gdc.identifier.wos WOS:000273718300016
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype BRONZE
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 3.34611E-9
gdc.oaire.isgreen false
gdc.oaire.keywords operator norm
gdc.oaire.keywords Approximation by polynomials
gdc.oaire.keywords Banach spaces of continuous, differentiable or analytic functions
gdc.oaire.keywords \(q\)-Bernstein polynomials
gdc.oaire.keywords \(q\)-integers
gdc.oaire.keywords \(q\)-Bernstein operator
gdc.oaire.keywords Inequalities for trigonometric functions and polynomials
gdc.oaire.keywords Norms (inequalities, more than one norm, etc.) of linear operators
gdc.oaire.keywords Rate of growth of functions, orders of infinity, slowly varying functions
gdc.oaire.keywords strong asymptotic order
gdc.oaire.keywords \(q\)-binomial coefficients
gdc.oaire.popularity 1.3780784E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 1.07678869
gdc.openalex.normalizedpercentile 0.81
gdc.opencitations.count 10
gdc.plumx.crossrefcites 7
gdc.plumx.scopuscites 10
gdc.scopus.citedcount 10
gdc.virtual.author Ostrovska, Sofiya
gdc.wos.citedcount 8
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscovery af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections