The Norm Estimates for The <i>q</I>-bernstein Operator in The Case <i>q</I> &gt; 1

dc.authorscopusid 35276301700
dc.authorscopusid 35610828900
dc.authorwosid Ostrovska, Sofiya/AAA-2156-2020
dc.contributor.author Wang, Heping
dc.contributor.author Ostrovska, Sofiya
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-05T15:11:40Z
dc.date.available 2024-07-05T15:11:40Z
dc.date.issued 2010
dc.department Atılım University en_US
dc.department-temp [Wang, Heping] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China; [Ostrovska, Sofiya] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
dc.description.abstract The q-Bernstein basis with 0 < q < 1 emerges as an extension of the Bernstein basis corresponding to a stochastic process generalizing Bernoulli trials forming a totally positive system on [0, 1]. In the case q > 1, the behavior of the q-Bernstein basic polynomials on [0, 1] combines the fast increase in magnitude with sign oscillations. This seriously complicates the study of q-Bernstein polynomials in the case of q > 1. The aim of this paper is to present norm estimates in C[0, 1] for the q-Bernstein basic polynomials and the q-Bernstein operator B-n,B-q in the case q > 1. While for 0 < q <= 1, parallel to B-n,B-q parallel to = 1 for all n is an element of N, in the case q > 1, the norm parallel to B-n,B-q parallel to increases rather rapidly as n -> infinity. We prove here that parallel to B-n,B-q parallel to similar to C(q)q(n(n-1)/2)/n, n -> infinity with C-q = 2 (q(-2); q(-2))(infinity)/e. Such a fast growth of norms provides an explanation for the unpredictable behavior of q-Bernstein polynomials (q > 1) with respect to convergence. en_US
dc.description.sponsorship National Natural Science Foundation of China [10871132]; Beijing Natural Science Foundation [1062004]; Beijing Municipal Education Commission [KZ200810028013] en_US
dc.description.sponsorship The first author was supported by National Natural Science Foundation of China (Project no. 10871132), Beijing Natural Science Foundation (1062004), and by a grant from the Key Programs of Beijing Municipal Education Commission (KZ200810028013). en_US
dc.identifier.citationcount 8
dc.identifier.doi 10.1090/S0025-5718-09-02273-X
dc.identifier.endpage 363 en_US
dc.identifier.issn 0025-5718
dc.identifier.issn 1088-6842
dc.identifier.issue 269 en_US
dc.identifier.scopus 2-s2.0-77952826708
dc.identifier.startpage 353 en_US
dc.identifier.uri https://doi.org/10.1090/S0025-5718-09-02273-X
dc.identifier.uri https://hdl.handle.net/20.500.14411/1458
dc.identifier.volume 79 en_US
dc.identifier.wos WOS:000273718300016
dc.identifier.wosquality Q2
dc.institutionauthor Ostrovska, Sofiya
dc.language.iso en en_US
dc.publisher Amer Mathematical Soc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 10
dc.subject q-integers en_US
dc.subject q-binomial coefficients en_US
dc.subject q-Bernstein polynomials en_US
dc.subject q-Bernstein operator en_US
dc.subject operator norm en_US
dc.subject strong asymptotic order en_US
dc.title The Norm Estimates for The <i>q</I>-bernstein Operator in The Case <i>q</I> &gt; 1 en_US
dc.type Article en_US
dc.wos.citedbyCount 8
dspace.entity.type Publication
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscovery af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections