HOW DO SINGULARITIES OF FUNCTIONS AFFECT THE CONVERGENCE OF <i>q</i>-BERNSTEIN POLYNOMIALS?

dc.contributor.author Ostrovska, Sofiya
dc.contributor.author Ozban, Ahmet Yasar
dc.contributor.author Turan, Mehmet
dc.contributor.other Mathematics
dc.contributor.other 02. School of Arts and Sciences
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T14:31:36Z
dc.date.available 2024-07-05T14:31:36Z
dc.date.issued 2015
dc.description Turan, Mehmet/0000-0002-1718-3902 en_US
dc.description.abstract In this article, the approximation of functions with a singularity at alpha is an element of (0, 1) by the q-Bernstein polynomials for q > 1 has been studied. Unlike the situation when alpha is an element of (0, 1) \ {q(-j)} j is an element of N, in the case when alpha = q(-m), m is an element of N, the type of singularity has a decisive effect on the set where a function can be approximated. In the latter event, depending on the types of singularities, three classes of functions have been examined, and it has been found that the possibility of approximation varies considerably for these classes. en_US
dc.identifier.doi 10.7153/jmi-09-12
dc.identifier.issn 1846-579X
dc.identifier.scopus 2-s2.0-84930360376
dc.identifier.uri https://doi.org/10.7153/jmi-09-12
dc.identifier.uri https://hdl.handle.net/20.500.14411/712
dc.language.iso en en_US
dc.publisher Element en_US
dc.relation.ispartof Journal of Mathematical Inequalities
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject q-Bernstein polynomial en_US
dc.subject inner singularity en_US
dc.subject approximation of unbounded functions en_US
dc.subject convergence en_US
dc.title HOW DO SINGULARITIES OF FUNCTIONS AFFECT THE CONVERGENCE OF <i>q</i>-BERNSTEIN POLYNOMIALS? en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Turan, Mehmet/0000-0002-1718-3902
gdc.author.institutional Turan, Mehmet
gdc.author.institutional Ostrovska, Sofiya
gdc.author.institutional Özban, Ahmet Yaşar
gdc.author.scopusid 35610828900
gdc.author.scopusid 9276702800
gdc.author.scopusid 35782583700
gdc.author.wosid Ostrovska, Sofiya/AAA-2156-2020
gdc.author.wosid Turan, Mehmet/JYQ-4459-2024
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Ostrovska, Sofiya; Ozban, Ahmet Yasar; Turan, Mehmet] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
gdc.description.endpage 136 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 121 en_US
gdc.description.volume 9 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2508829974
gdc.identifier.wos WOS:000353524600012
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.7463705E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 8.1082757E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.fwci 0.453
gdc.openalex.normalizedpercentile 0.35
gdc.opencitations.count 2
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.wos.citedcount 2
relation.isAuthorOfPublication 5010d3f8-f1f2-4750-b086-e5b5edacaef7
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication 441f0f87-7ece-46f6-b47b-51c64752df12
relation.isAuthorOfPublication.latestForDiscovery 5010d3f8-f1f2-4750-b086-e5b5edacaef7
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections