Anomaly Detection using Fuzzy Q-learning Algorithm
dc.authorid | Mat Kiah, Miss Laiha/0000-0002-1240-5406 | |
dc.authorid | Misra, Sanjay/0000-0002-3556-9331 | |
dc.authorid | Anuar, Nor Badrul/0000-0003-4380-5303 | |
dc.authorwosid | S.Band, Shahab/ABI-7388-2020 | |
dc.authorwosid | Mat Kiah, Miss Laiha/B-2767-2010 | |
dc.authorwosid | Misra, Sanjay/K-2203-2014 | |
dc.authorwosid | Anuar, Nor Badrul/B-3101-2010 | |
dc.contributor.author | Shamshirband, Shahaboddin | |
dc.contributor.author | Anuar, Nor Badrul | |
dc.contributor.author | Kiah, Miss Laiha Mat | |
dc.contributor.author | Misra, Sanjay | |
dc.contributor.other | Computer Engineering | |
dc.date.accessioned | 2024-10-06T10:59:56Z | |
dc.date.available | 2024-10-06T10:59:56Z | |
dc.date.issued | 2014 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Shamshirband, Shahaboddin] Islamic Azad Univ, Dept Comp Sci, Chalous Branch, Chalous 46615397, Iran; [Anuar, Nor Badrul; Kiah, Miss Laiha Mat] Univ Malaya, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, Malaysia; [Misra, Sanjay] Atilim Univ, Dept Comp Engn, TR-06836 Ankara, Turkey | en_US |
dc.description | Mat Kiah, Miss Laiha/0000-0002-1240-5406; Misra, Sanjay/0000-0002-3556-9331; Anuar, Nor Badrul/0000-0003-4380-5303 | en_US |
dc.description.abstract | Wireless networks are increasingly overwhelmed by Distributed Denial of Service (DDoS) attacks by generating flooding packets that exhaust critical computing and communication resources of a victim's mobile device within a very short period of time. This must be protected. Effective detection of DDoS attacks requires an adaptive learning classifier, with less computational complexity, and an accurate decision making to stunt such attacks. In this paper, we propose an intrusion detection system called Fuzzy Q-learning (FQL) algorithm to protect wireless nodes within the network and target nodes from DDoS attacks to identify the attack patterns and take appropriate countermeasures. The FQL algorithm was trained and tested to establish its performance by generating attacks from the NSL-KDD and CAIDA DDoS Attack datasets during the simulation experiments. Experimental results show that the proposed FQL IDS has higher accuracy of detection rate than Fuzzy Logic Controller and Q-learning algorithm alone. | en_US |
dc.description.sponsorship | University of Malaya, Malaysia [RG108-12ICT] | en_US |
dc.description.sponsorship | This work is supported by the University of Malaya, Malaysia, under Research Grant RG108-12ICT. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | 9 | |
dc.identifier.doi | [WOS-DOI-BELIRLENECEK-297] | |
dc.identifier.endpage | 28 | en_US |
dc.identifier.issn | 1785-8860 | |
dc.identifier.issue | 8 | en_US |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 5 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/9048 | |
dc.identifier.volume | 11 | en_US |
dc.identifier.wos | WOS:000346148600001 | |
dc.identifier.wosquality | Q3 | |
dc.institutionauthor | Mısra, Sanjay | |
dc.language.iso | en | en_US |
dc.publisher | Budapest Tech | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Intrusion detection | en_US |
dc.subject | Fuzzy system | en_US |
dc.subject | Reinforcement learning | en_US |
dc.subject | Multi Agent System | en_US |
dc.title | Anomaly Detection using Fuzzy Q-learning Algorithm | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 53e88841-fdb7-484f-9e08-efa4e6d1a090 | |
relation.isAuthorOfPublication.latestForDiscovery | 53e88841-fdb7-484f-9e08-efa4e6d1a090 | |
relation.isOrgUnitOfPublication | e0809e2c-77a7-4f04-9cb0-4bccec9395fa | |
relation.isOrgUnitOfPublication.latestForDiscovery | e0809e2c-77a7-4f04-9cb0-4bccec9395fa |