Anomaly Detection using Fuzzy Q-learning Algorithm

dc.authoridMat Kiah, Miss Laiha/0000-0002-1240-5406
dc.authoridMisra, Sanjay/0000-0002-3556-9331
dc.authoridAnuar, Nor Badrul/0000-0003-4380-5303
dc.authorwosidS.Band, Shahab/ABI-7388-2020
dc.authorwosidMat Kiah, Miss Laiha/B-2767-2010
dc.authorwosidMisra, Sanjay/K-2203-2014
dc.authorwosidAnuar, Nor Badrul/B-3101-2010
dc.contributor.authorShamshirband, Shahaboddin
dc.contributor.authorAnuar, Nor Badrul
dc.contributor.authorKiah, Miss Laiha Mat
dc.contributor.authorMisra, Sanjay
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-10-06T10:59:56Z
dc.date.available2024-10-06T10:59:56Z
dc.date.issued2014
dc.departmentAtılım Universityen_US
dc.department-temp[Shamshirband, Shahaboddin] Islamic Azad Univ, Dept Comp Sci, Chalous Branch, Chalous 46615397, Iran; [Anuar, Nor Badrul; Kiah, Miss Laiha Mat] Univ Malaya, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, Malaysia; [Misra, Sanjay] Atilim Univ, Dept Comp Engn, TR-06836 Ankara, Turkeyen_US
dc.descriptionMat Kiah, Miss Laiha/0000-0002-1240-5406; Misra, Sanjay/0000-0002-3556-9331; Anuar, Nor Badrul/0000-0003-4380-5303en_US
dc.description.abstractWireless networks are increasingly overwhelmed by Distributed Denial of Service (DDoS) attacks by generating flooding packets that exhaust critical computing and communication resources of a victim's mobile device within a very short period of time. This must be protected. Effective detection of DDoS attacks requires an adaptive learning classifier, with less computational complexity, and an accurate decision making to stunt such attacks. In this paper, we propose an intrusion detection system called Fuzzy Q-learning (FQL) algorithm to protect wireless nodes within the network and target nodes from DDoS attacks to identify the attack patterns and take appropriate countermeasures. The FQL algorithm was trained and tested to establish its performance by generating attacks from the NSL-KDD and CAIDA DDoS Attack datasets during the simulation experiments. Experimental results show that the proposed FQL IDS has higher accuracy of detection rate than Fuzzy Logic Controller and Q-learning algorithm alone.en_US
dc.description.sponsorshipUniversity of Malaya, Malaysia [RG108-12ICT]en_US
dc.description.sponsorshipThis work is supported by the University of Malaya, Malaysia, under Research Grant RG108-12ICT.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation9
dc.identifier.doi[WOS-DOI-BELIRLENECEK-297]
dc.identifier.endpage28en_US
dc.identifier.issn1785-8860
dc.identifier.issue8en_US
dc.identifier.scopusqualityQ1
dc.identifier.startpage5en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14411/9048
dc.identifier.volume11en_US
dc.identifier.wosWOS:000346148600001
dc.identifier.wosqualityQ3
dc.institutionauthorMısra, Sanjay
dc.language.isoenen_US
dc.publisherBudapest Techen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectIntrusion detectionen_US
dc.subjectFuzzy systemen_US
dc.subjectReinforcement learningen_US
dc.subjectMulti Agent Systemen_US
dc.titleAnomaly Detection using Fuzzy Q-learning Algorithmen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscovery53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections