Convergence of Generalized Bernstein Polynomials

dc.contributor.author Il'inskii, A
dc.contributor.author Ostrovska, S
dc.contributor.other Mathematics
dc.contributor.other 02. School of Arts and Sciences
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:08:51Z
dc.date.available 2024-07-05T15:08:51Z
dc.date.issued 2002
dc.description.abstract Let f is an element of C[0, 1], q is an element of (0, 1), and B-n(f, q; x) be generalized Bernstein polynomials based on the q-integers. These polynomials were introduced by G. M. Phillips in 1997. We study convergence properties of the sequence {B-n(f, q; x)}(n=1)(infinity). It is shown that in general these properties are essentially different from those in the classical case q = 1. (C) 2002 Elsevier Science (USA). en_US
dc.identifier.doi 10.1006/jath.2001.3657
dc.identifier.issn 0021-9045
dc.identifier.scopus 2-s2.0-0036287075
dc.identifier.uri https://doi.org/10.1006/jath.2001.3657
dc.identifier.uri https://hdl.handle.net/20.500.14411/1114
dc.language.iso en en_US
dc.publisher Academic Press inc Elsevier Science en_US
dc.relation.ispartof Journal of Approximation Theory
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject generalized Bernstein polynomials en_US
dc.subject q-integers en_US
dc.subject q-binomial coefficients en_US
dc.subject convergence en_US
dc.title Convergence of Generalized Bernstein Polynomials en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Ostrovska, Sofiya
gdc.author.scopusid 16412686000
gdc.author.scopusid 35610828900
gdc.author.wosid Ostrovska, Sofiya/AAA-2156-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C3
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Kharkov Natl Univ, Dept Math & Mech, UA-61077 Kharkov, Ukraine; Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
gdc.description.endpage 112 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 100 en_US
gdc.description.volume 116 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W1976420751
gdc.identifier.wos WOS:000176197200005
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 4.0
gdc.oaire.influence 3.2991135E-8
gdc.oaire.isgreen false
gdc.oaire.keywords Mathematics(all)
gdc.oaire.keywords Numerical Analysis
gdc.oaire.keywords convergence
gdc.oaire.keywords Applied Mathematics
gdc.oaire.keywords \(q\)-integers
gdc.oaire.keywords Bernstein polynomials
gdc.oaire.keywords q-integers
gdc.oaire.keywords Approximation by polynomials
gdc.oaire.keywords generalized Bernstein polynomials
gdc.oaire.keywords \(q\)-binomial coefficients
gdc.oaire.keywords Analysis
gdc.oaire.keywords q-binomial coefficients
gdc.oaire.popularity 1.9903089E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0101 mathematics
gdc.openalex.fwci 1.784
gdc.openalex.normalizedpercentile 0.97
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 108
gdc.plumx.crossrefcites 107
gdc.plumx.mendeley 10
gdc.plumx.scopuscites 135
gdc.scopus.citedcount 135
gdc.wos.citedcount 125
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscovery af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections