On the Convergence of the <i>q</i>-Bernstein Polynomials for Power Functions
dc.authorid | Ostrovska, Sofiya/0000-0003-1842-7953 | |
dc.authorscopusid | 35610828900 | |
dc.authorscopusid | 9276702800 | |
dc.contributor.author | Ostrovska, Sofiya | |
dc.contributor.author | Ozban, Ahmet Yasar | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T15:21:27Z | |
dc.date.available | 2024-07-05T15:21:27Z | |
dc.date.issued | 2021 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Ostrovska, Sofiya] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey; [Ozban, Ahmet Yasar] Cankiri Karatekin Univ, Dept Math, TR-18100 Cankiri, Turkey; [Ozban, Ahmet Yasar] OSYM Baskanligi, TR-06800 Ankara, Turkey | en_US |
dc.description | Ostrovska, Sofiya/0000-0003-1842-7953 | en_US |
dc.description.abstract | The aim of this paper is to present new results related to the convergence of the sequence of the complex q-Bernstein polynomials {B-n,B-q(f(alpha); z)}, where 0 < q not equal 1 and f(alpha) = x(alpha), alpha >= 0, is a power function on [0, 1]. This study makes it possible to describe all feasible sets of convergence K for such polynomials. Specifically, if either 0 < q < 1 or alpha is an element of N-0, then K = C, otherwise K = {0} boolean OR {q(-j)}(j=0)(infinity). In the latter case, this identifies the sequence K = {0} boolean OR {q(-j)}(j=0)(infinity) as the 'minimal' set of convergence for polynomials B-n,B-q(f; z), f is an element of C[0, 1] in the case q > 1. In addition, the asymptotic behavior of the polynomials {B-n,B-q(f(alpha); z)}, with q > 1 has been investigated and the obtained results are illustrated by numerical examples. | en_US |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1007/s00009-021-01756-y | |
dc.identifier.issn | 1660-5446 | |
dc.identifier.issn | 1660-5454 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-85104256182 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1007/s00009-021-01756-y | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/2087 | |
dc.identifier.volume | 18 | en_US |
dc.identifier.wos | WOS:000639444200001 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Ostrovska, Sofiya | |
dc.institutionauthor | Özban, Ahmet Yaşar | |
dc.language.iso | en | en_US |
dc.publisher | Springer Basel Ag | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | q-integer | en_US |
dc.subject | q-Bernstein polynomial | en_US |
dc.subject | Power function | en_US |
dc.subject | Convergence | en_US |
dc.title | On the Convergence of the <i>q</i>-Bernstein Polynomials for Power Functions | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isAuthorOfPublication | 441f0f87-7ece-46f6-b47b-51c64752df12 | |
relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |