On the Convergence of the <i>q</i>-Bernstein Polynomials for Power Functions

dc.authoridOstrovska, Sofiya/0000-0003-1842-7953
dc.authorscopusid35610828900
dc.authorscopusid9276702800
dc.contributor.authorOstrovska, Sofiya
dc.contributor.authorOzban, Ahmet Yasar
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T15:21:27Z
dc.date.available2024-07-05T15:21:27Z
dc.date.issued2021
dc.departmentAtılım Universityen_US
dc.department-temp[Ostrovska, Sofiya] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey; [Ozban, Ahmet Yasar] Cankiri Karatekin Univ, Dept Math, TR-18100 Cankiri, Turkey; [Ozban, Ahmet Yasar] OSYM Baskanligi, TR-06800 Ankara, Turkeyen_US
dc.descriptionOstrovska, Sofiya/0000-0003-1842-7953en_US
dc.description.abstractThe aim of this paper is to present new results related to the convergence of the sequence of the complex q-Bernstein polynomials {B-n,B-q(f(alpha); z)}, where 0 < q not equal 1 and f(alpha) = x(alpha), alpha >= 0, is a power function on [0, 1]. This study makes it possible to describe all feasible sets of convergence K for such polynomials. Specifically, if either 0 < q < 1 or alpha is an element of N-0, then K = C, otherwise K = {0} boolean OR {q(-j)}(j=0)(infinity). In the latter case, this identifies the sequence K = {0} boolean OR {q(-j)}(j=0)(infinity) as the 'minimal' set of convergence for polynomials B-n,B-q(f; z), f is an element of C[0, 1] in the case q > 1. In addition, the asymptotic behavior of the polynomials {B-n,B-q(f(alpha); z)}, with q > 1 has been investigated and the obtained results are illustrated by numerical examples.en_US
dc.identifier.citation0
dc.identifier.doi10.1007/s00009-021-01756-y
dc.identifier.issn1660-5446
dc.identifier.issn1660-5454
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85104256182
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1007/s00009-021-01756-y
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2087
dc.identifier.volume18en_US
dc.identifier.wosWOS:000639444200001
dc.identifier.wosqualityQ2
dc.institutionauthorOstrovska, Sofiya
dc.institutionauthorÖzban, Ahmet Yaşar
dc.language.isoenen_US
dc.publisherSpringer Basel Agen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectq-integeren_US
dc.subjectq-Bernstein polynomialen_US
dc.subjectPower functionen_US
dc.subjectConvergenceen_US
dc.titleOn the Convergence of the <i>q</i>-Bernstein Polynomials for Power Functionsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication441f0f87-7ece-46f6-b47b-51c64752df12
relation.isAuthorOfPublication.latestForDiscoveryaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections