Acoustic Control of Flow over NACA 2415 Airfoil at Low Reynolds Numbers

No Thumbnail Available

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Asce-amer Soc Civil Engineers

Research Projects

Organizational Units

Organizational Unit
Airframe and Powerplant Maintenance
(2012)
The Atılım University Department of Airframe and Powerplant Maintenance has been offering Civil Aviation education in English since 2012. In an effort to provide the best level of education, ATILIM UNIVERSITY demonstrated its merit as a role model in Civil Aviation Education last year by being granted a SHY 147 certificate with the status of “Approved Aircraft Maintenance Training Institution” by the General Directorate of Civil Aviation. The SHY 147 is a certificate for Approved Aircraft Maintenance Training Institutions. It is granted to institutions where training programs have undergone inspection, and the quality of the education offered has been approved by the General Directorate of Civil Aviation. With our Civil Aviation Training Center at Esenboğa Airport (our hangar), and the two Cessna-337 planes with double piston engines both of which are fully operational, as well our Beechcraft C90 Kingait plaine with double Turboprop engines, Atılım University is an institution to offer hands-on technical training in civil aviation, and one that strives to take the education it offers to the extremes in terms of technology. The Atılım university Graduate School Department of Airframe and Powerplant Maintenance is a fully-equipped civil aviation school to complement its theoretical education with hands-on training using planes of various kinds. Even before their graduation, most of our students are hired in Turkey’s most prestigious institutions in such a rapidly-developing sector. We are looking forward to welcoming you at this modern and contemporary institution for your education in civil aviation.

Journal Issue

Abstract

In this study, the effects of acoustic excitation frequency on flow over an NACA 2415 airfoil were determined, and all of the experiments were done both with and without the presence of the acoustic excitation. The acoustic excitation was applied for a range of angles of attack (0 degrees-25 degrees) and Reynolds numbers of 50,000, 75,000, 100,000, 150,000, and 200,000. To examine the effects of acoustic excitation on the flow, force measurements, pressure measurements, hot-wire anemometry, smoke-wire flow-visualization, and particle image velocimetry techniques were employed. The results indicated that for stall and some limited poststall angles of attack of the acoustic excitation having a frequency in a certain range forced the separated shear layer to reattach to the surface of the airfoil. As the Reynolds number increased, the effective excitation frequency increased, but the range of Zaman number [St/(R-1/2)] was the same. With the acoustic excitation, the stall angle was delayed from 12 degrees to 16 degrees at R = 50,000, and there was a 30% and 50% increase on the maximum value of the lift coefficient and the ratio of the lift and drag forces, respectively. Moreover, the stall angle was delayed from 13 degrees to 17 degrees at R = 75,000, from 15 degrees to 18 degrees at R = 100,000, from 15 degrees to 17 degrees at R = 150,000. Furthermore, it was concluded that acoustic excitation shrunk laminar separation bubble, and an effect of the acoustic control on the separation bubble decreased as the Reynolds number increased. (C) 2016 American Society of Civil Engineers.

Description

AÇIKEL, HALIL HAKAN/0000-0001-5327-0440; GENC, Mustafa Serdar/0000-0002-6540-620X; Ozkan, Gokhan/0000-0002-2885-9621; Karasu, ilyas/0000-0003-3138-6236

Keywords

Acoustic control, Low Reynolds number flow, Laminar separation bubble, Transition, Experimental aerodynamics, Flow visualization

Turkish CoHE Thesis Center URL

Citation

27

WoS Q

Q2

Scopus Q

Source

Volume

29

Issue

6

Start Page

End Page

Collections