An Artificial Neural Network Model for Road Accident Prediction: a Case Study of a Developing Country

dc.contributor.author Ogwueleka, Francisca Nonyelum
dc.contributor.author Misra, Sanjay
dc.contributor.author Ogwueleka, Toochukwu Chibueze
dc.contributor.author Fernandez-Sanz, L.
dc.contributor.other Computer Engineering
dc.contributor.other Computer Engineering
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-10-06T10:57:07Z
dc.date.available 2024-10-06T10:57:07Z
dc.date.issued 2014
dc.description Misra, Sanjay/0000-0002-3556-9331; Fernandez Sanz, Luis/0000-0003-0778-0073 en_US
dc.description.abstract Road traffic accidents (RTA) are one of the major root causes of the unnatural loses of human beings all over the world. Although the rates of RTAs are decreasing in most developed countries, this is not the case in developing countries. The increase in the number of vehicles and inefficient drivers on the road, as well as to the poor conditions and maintenance of the roads, are responsible for this crisis in developing countries. In this paper, we produce a design of an Artificial Neural Network (ANN) model for the analysis and prediction of accident rates in a developing country. We apply the most recent (1998 to 2010) data to our model. In the design, the number of vehicles, accidents, and population were selected and used as model parameters. The sigmoid and linear functions were used as activation functions with the feed forward-back propagation algorithm. The performance evaluation of the model signified that the ANN model is better than other statistical methods in use. en_US
dc.identifier.issn 1785-8860
dc.identifier.scopus 2-s2.0-84901746322
dc.identifier.uri https://hdl.handle.net/20.500.14411/8674
dc.language.iso en en_US
dc.publisher Budapest Tech en_US
dc.relation.ispartof Acta Polytechnica Hungarica en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Artificial neural network en_US
dc.subject road en_US
dc.subject accident en_US
dc.subject linear function en_US
dc.subject back propagation en_US
dc.subject vehicles en_US
dc.title An Artificial Neural Network Model for Road Accident Prediction: a Case Study of a Developing Country en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Misra, Sanjay/0000-0002-3556-9331
gdc.author.id Fernandez Sanz, Luis/0000-0003-0778-0073
gdc.author.institutional Mısra, Sanjay
gdc.author.institutional Mısra, Sanjay
gdc.author.scopusid 35264573100
gdc.author.scopusid 56962766700
gdc.author.scopusid 6506263707
gdc.author.scopusid 25630384100
gdc.author.wosid OGWUELEKA, Toochukwu/ACR-2124-2022
gdc.author.wosid Fernandez-Sanz, Luis/J-4895-2012
gdc.author.wosid Misra, Sanjay/K-2203-2014
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Ogwueleka, Francisca Nonyelum] Fed Univ Wukari, Dept Comp Sci, Wukari, Taraba State, Nigeria; [Misra, Sanjay] Atilim Univ, Dept Comp Engn, Ankara 06830, Turkey; [Ogwueleka, Toochukwu Chibueze] Univ Abuja, Dept Civil Engn, Abuja, Nigeria; [Fernandez-Sanz, L.] Univ Alcala, Alcala De Henares 28801, Madrid, Spain en_US
gdc.description.endpage 197 en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 177 en_US
gdc.description.volume 11 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.wos WOS:000340689800011
gdc.scopus.citedcount 32
gdc.wos.citedcount 20
relation.isAuthorOfPublication 53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscovery 53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections