An Artificial Neural Network Model for Road Accident Prediction: a Case Study of a Developing Country

dc.authoridMisra, Sanjay/0000-0002-3556-9331
dc.authoridFernandez Sanz, Luis/0000-0003-0778-0073
dc.authorwosidOGWUELEKA, Toochukwu/ACR-2124-2022
dc.authorwosidFernandez-Sanz, Luis/J-4895-2012
dc.authorwosidMisra, Sanjay/K-2203-2014
dc.contributor.authorOgwueleka, Francisca Nonyelum
dc.contributor.authorMısra, Sanjay
dc.contributor.authorMisra, Sanjay
dc.contributor.authorOgwueleka, Toochukwu Chibueze
dc.contributor.authorFernandez-Sanz, L.
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-10-06T10:57:07Z
dc.date.available2024-10-06T10:57:07Z
dc.date.issued2014
dc.departmentAtılım Universityen_US
dc.department-temp[Ogwueleka, Francisca Nonyelum] Fed Univ Wukari, Dept Comp Sci, Wukari, Taraba State, Nigeria; [Misra, Sanjay] Atilim Univ, Dept Comp Engn, Ankara 06830, Turkey; [Ogwueleka, Toochukwu Chibueze] Univ Abuja, Dept Civil Engn, Abuja, Nigeria; [Fernandez-Sanz, L.] Univ Alcala, Alcala De Henares 28801, Madrid, Spainen_US
dc.descriptionMisra, Sanjay/0000-0002-3556-9331; Fernandez Sanz, Luis/0000-0003-0778-0073en_US
dc.description.abstractRoad traffic accidents (RTA) are one of the major root causes of the unnatural loses of human beings all over the world. Although the rates of RTAs are decreasing in most developed countries, this is not the case in developing countries. The increase in the number of vehicles and inefficient drivers on the road, as well as to the poor conditions and maintenance of the roads, are responsible for this crisis in developing countries. In this paper, we produce a design of an Artificial Neural Network (ANN) model for the analysis and prediction of accident rates in a developing country. We apply the most recent (1998 to 2010) data to our model. In the design, the number of vehicles, accidents, and population were selected and used as model parameters. The sigmoid and linear functions were used as activation functions with the feed forward-back propagation algorithm. The performance evaluation of the model signified that the ANN model is better than other statistical methods in use.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation20
dc.identifier.doi[WOS-DOI-BELIRLENECEK-305]
dc.identifier.endpage197en_US
dc.identifier.issn1785-8860
dc.identifier.issue5en_US
dc.identifier.scopusqualityQ1
dc.identifier.startpage177en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14411/8674
dc.identifier.volume11en_US
dc.identifier.wosWOS:000340689800011
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherBudapest Techen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural networken_US
dc.subjectroaden_US
dc.subjectaccidenten_US
dc.subjectlinear functionen_US
dc.subjectback propagationen_US
dc.subjectvehiclesen_US
dc.titleAn Artificial Neural Network Model for Road Accident Prediction: a Case Study of a Developing Countryen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscovery53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections