An Artificial Neural Network Model for Road Accident Prediction: a Case Study of a Developing Country
dc.authorid | Misra, Sanjay/0000-0002-3556-9331 | |
dc.authorid | Fernandez Sanz, Luis/0000-0003-0778-0073 | |
dc.authorwosid | OGWUELEKA, Toochukwu/ACR-2124-2022 | |
dc.authorwosid | Fernandez-Sanz, Luis/J-4895-2012 | |
dc.authorwosid | Misra, Sanjay/K-2203-2014 | |
dc.contributor.author | Ogwueleka, Francisca Nonyelum | |
dc.contributor.author | Mısra, Sanjay | |
dc.contributor.author | Misra, Sanjay | |
dc.contributor.author | Ogwueleka, Toochukwu Chibueze | |
dc.contributor.author | Fernandez-Sanz, L. | |
dc.contributor.other | Computer Engineering | |
dc.date.accessioned | 2024-10-06T10:57:07Z | |
dc.date.available | 2024-10-06T10:57:07Z | |
dc.date.issued | 2014 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Ogwueleka, Francisca Nonyelum] Fed Univ Wukari, Dept Comp Sci, Wukari, Taraba State, Nigeria; [Misra, Sanjay] Atilim Univ, Dept Comp Engn, Ankara 06830, Turkey; [Ogwueleka, Toochukwu Chibueze] Univ Abuja, Dept Civil Engn, Abuja, Nigeria; [Fernandez-Sanz, L.] Univ Alcala, Alcala De Henares 28801, Madrid, Spain | en_US |
dc.description | Misra, Sanjay/0000-0002-3556-9331; Fernandez Sanz, Luis/0000-0003-0778-0073 | en_US |
dc.description.abstract | Road traffic accidents (RTA) are one of the major root causes of the unnatural loses of human beings all over the world. Although the rates of RTAs are decreasing in most developed countries, this is not the case in developing countries. The increase in the number of vehicles and inefficient drivers on the road, as well as to the poor conditions and maintenance of the roads, are responsible for this crisis in developing countries. In this paper, we produce a design of an Artificial Neural Network (ANN) model for the analysis and prediction of accident rates in a developing country. We apply the most recent (1998 to 2010) data to our model. In the design, the number of vehicles, accidents, and population were selected and used as model parameters. The sigmoid and linear functions were used as activation functions with the feed forward-back propagation algorithm. The performance evaluation of the model signified that the ANN model is better than other statistical methods in use. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | 20 | |
dc.identifier.doi | [WOS-DOI-BELIRLENECEK-305] | |
dc.identifier.endpage | 197 | en_US |
dc.identifier.issn | 1785-8860 | |
dc.identifier.issue | 5 | en_US |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 177 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/8674 | |
dc.identifier.volume | 11 | en_US |
dc.identifier.wos | WOS:000340689800011 | |
dc.identifier.wosquality | Q3 | |
dc.language.iso | en | en_US |
dc.publisher | Budapest Tech | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Artificial neural network | en_US |
dc.subject | road | en_US |
dc.subject | accident | en_US |
dc.subject | linear function | en_US |
dc.subject | back propagation | en_US |
dc.subject | vehicles | en_US |
dc.title | An Artificial Neural Network Model for Road Accident Prediction: a Case Study of a Developing Country | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 53e88841-fdb7-484f-9e08-efa4e6d1a090 | |
relation.isAuthorOfPublication.latestForDiscovery | 53e88841-fdb7-484f-9e08-efa4e6d1a090 | |
relation.isOrgUnitOfPublication | e0809e2c-77a7-4f04-9cb0-4bccec9395fa | |
relation.isOrgUnitOfPublication.latestForDiscovery | e0809e2c-77a7-4f04-9cb0-4bccec9395fa |