Multiscale modeling of tempering of AISI H13 hot-work tool steel - Part 1: Prediction of microstructure evolution and coupling with mechanical properties

dc.authorid Simsir, Caner/0009-0006-7871-4232
dc.authorscopusid 26967503300
dc.authorscopusid 6601982286
dc.authorscopusid 24342602900
dc.authorwosid Simsir, Caner/CAJ-2630-2022
dc.authorwosid Broeckmann, Christoph/JZT-4640-2024
dc.contributor.author Eser, A.
dc.contributor.author Broeckmann, C.
dc.contributor.author Simsir, C.
dc.contributor.other Manufacturing Engineering
dc.date.accessioned 2024-07-05T14:29:12Z
dc.date.available 2024-07-05T14:29:12Z
dc.date.issued 2016
dc.department Atılım University en_US
dc.department-temp [Eser, A.; Broeckmann, C.] Rhein Westfal TH Aachen, Inst Mat Applicat Mech Engn IWM, D-52062 Aachen, Germany; [Simsir, C.] Atilim Univ, Met Forming Ctr Excellence MFGE, TR-06836 Ankara, Turkey en_US
dc.description Simsir, Caner/0009-0006-7871-4232 en_US
dc.description.abstract In the first part of this two part study, the mechanical properties necessary for the simulation of tempering of an AISI H13 (DIN 1.2344, X40CrMoV5-1) tool steel was derived using physically based precipitation simulations and microstructure-property relationships. For this purpose, the precipitation of fine carbides were simulated using a thermo-kinetic software which allows prediction of the evolution of precipitation/dissolution reactions and the particle sizes. Then, those microstructural findings were coupled with physically based microstructure-property models to predict the yield stress, flow curve and creep properties. The predicted mechanical properties were verified with corresponding experiments and a good agreement was found. In the second part of this study, those properties were coupled with a Finite Element (FE) model in order to predict the relaxation of internal stresses and the evolution of deformations at the macroscopic scale. (C) 2015 Elsevier B.V. All rights reserved. en_US
dc.identifier.citationcount 35
dc.identifier.doi 10.1016/j.commatsci.2015.11.020
dc.identifier.endpage 291 en_US
dc.identifier.issn 0927-0256
dc.identifier.issn 1879-0801
dc.identifier.scopus 2-s2.0-84952629296
dc.identifier.startpage 280 en_US
dc.identifier.uri https://doi.org/10.1016/j.commatsci.2015.11.020
dc.identifier.uri https://hdl.handle.net/20.500.14411/481
dc.identifier.volume 113 en_US
dc.identifier.wos WOS:000367482400031
dc.identifier.wosquality Q3
dc.institutionauthor Şimşir, Caner
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 47
dc.subject Tempering Multiscale modeling en_US
dc.subject Precipitation simulation en_US
dc.subject Microstructure-property relationships en_US
dc.subject AISI H13 en_US
dc.title Multiscale modeling of tempering of AISI H13 hot-work tool steel - Part 1: Prediction of microstructure evolution and coupling with mechanical properties en_US
dc.type Article en_US
dc.wos.citedbyCount 41
dspace.entity.type Publication
relation.isAuthorOfPublication 1d264de9-5f32-47ad-9d84-dea8cd91bf4f
relation.isAuthorOfPublication.latestForDiscovery 1d264de9-5f32-47ad-9d84-dea8cd91bf4f
relation.isOrgUnitOfPublication 9804a563-7f37-4a61-92b1-e24b3f0d8418
relation.isOrgUnitOfPublication.latestForDiscovery 9804a563-7f37-4a61-92b1-e24b3f0d8418

Files

Collections