Reliability Analysis of Systems With Components Having Two Dependent Subcomponents

No Thumbnail Available

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis inc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Industrial Engineering
(1998)
Industrial Engineering is a field of engineering that develops and applies methods and techniques to design, implement, develop and improve systems comprising of humans, materials, machines, energy and funding. Our department was founded in 1998, and since then, has graduated hundreds of individuals who may compete nationally and internationally into professional life. Accredited by MÜDEK in 2014, our student-centered education continues. In addition to acquiring the knowledge necessary for every Industrial engineer, our students are able to gain professional experience in their desired fields of expertise with a wide array of elective courses, such as E-commerce and ERP, Reliability, Tabulation, or Industrial Engineering Applications in the Energy Sector. With dissertation projects fictionalized on solving real problems at real companies, our students gain experience in the sector, and a wide network of contacts. Our education is supported with ERASMUS programs. With the scientific studies of our competent academic staff published in internationally-renowned magazines, our department ranks with the bests among other universities. IESC, one of the most active student networks at our university, continues to organize extensive, and productive events every year.

Journal Issue

Events

Abstract

In this article, a system that consists of n independent components each having two dependent subcomponents (A(i), B-i), i = 1, ... ,n is considered. The system is assumed to compose of components that have two correlated subcomponents (A(i), B-i), and functions iff both systems of subcomponents A(1),A(2), ... ,A(n) and B-1, B-2, ... , B-n work under certain structural rules. The expressions for reiiabiiity and mean time to failure of such systems are obtained. A sufficient condition to compare two systems of bivariate components in terms of stochastic ordering is also ordering presented.

Description

Eryilmaz, Serkan/0000-0002-2108-1781

Keywords

Bivariate binomial distribution, Consecutive k-out-of-n:F system, Dependence, Stochastic ordering

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q4

Scopus Q

Source

Volume

46

Issue

10

Start Page

8005

End Page

8013

Collections