Dielectric Dispersion at the Mn/Znpc Interfaces

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley-v C H verlag Gmbh

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Events

Abstract

Herein, the effects of manganese transparent (150 nm) substrates on the structural, nonlinear optical, and dielectric properties of zinc phthalocyanine are explored. ZnPc thin films are observed to exhibit deformed crystal structure associated with remarkable enhancement in the light absorbability by 21 times at 2.62 eV and by 173 times in the near-infrared (NIR) region of light upon replacement of glass by transparent Mn substrates. The Mn layer also causes a redshift in the energy bandgap, allows generation of free carrier absorption process and increases the dielectric constant by more than 169% in the NIR region. The interaction between the manganese substrates with the organic ZnPc thin layers decreases the free holes density, widens the plasmon frequency range, and improves the drift mobility of holes. The nonlinear dielectric response with the highly improved light absorbability in the NIR range of light nominates the Mn/ZnPc thin films for optoelectronic applications.

Description

Qasrawi, Atef Fayez/0000-0001-8193-6975

Keywords

dielectric dispersion, Mn, ZnPC, optical conduction, plasmons, X-ray diffraction

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

257

Issue

6

Start Page

End Page

Collections