On the Lupas <i>q</I>-transform of Unbounded Functions
dc.authorscopusid | 35610828900 | |
dc.authorscopusid | 35782583700 | |
dc.authorwosid | Turan, Mehmet/JYQ-4459-2024 | |
dc.contributor.author | Ostrovska, Sofiya | |
dc.contributor.author | Turan, Mehmet | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T15:25:07Z | |
dc.date.available | 2024-07-05T15:25:07Z | |
dc.date.issued | 2023 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Ostrovska, Sofiya; Turan, Mehmet] Atilim Univ, Dept Math, TR-06830 Ankara, Turkiye | en_US |
dc.description.abstract | The Lupa , s q-transform comes out naturally in the study of the Lupa , s q-analogue of the Bernstein operator. It is closely related to the Heine q-distribution which has a numerous application in q-boson operator calculus and to the Valiron method of summation for divergent series. In this paper, the Lupa , s q-transform (lambda(q)f)(z), q is an element of (0, 1), of unbounded functions is considered in distinction to the previous researches, where only the case f is an element of C[0, 1] have been investigated. First, the condition for a function to possess the Lupa , s q-transform is presented. Also, results concerning the connection between growth rate of the function f (t) as t -> 1(-) and the growth of its Lupa , s q-transform (lambda(q)f)(z) as z -> infinity are established. (c) 2023 Mathematical Institute Slovak Academy of Sciences | en_US |
dc.identifier.citationcount | 0 | |
dc.identifier.doi | 10.1515/ms-2023-0016 | |
dc.identifier.endpage | 184 | en_US |
dc.identifier.issn | 0139-9918 | |
dc.identifier.issn | 1337-2211 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85148768143 | |
dc.identifier.startpage | 177 | en_US |
dc.identifier.uri | https://doi.org/10.1515/ms-2023-0016 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/2510 | |
dc.identifier.volume | 73 | en_US |
dc.identifier.wos | WOS:000936278300004 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Turan, Mehmet | |
dc.institutionauthor | Ostrovska, Sofiya | |
dc.language.iso | en | en_US |
dc.publisher | Walter de Gruyter Gmbh | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 0 | |
dc.subject | Lupas q-transform | en_US |
dc.subject | growth rate | en_US |
dc.subject | analytic function | en_US |
dc.subject | subharmonic function | en_US |
dc.title | On the Lupas <i>q</I>-transform of Unbounded Functions | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 0 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5010d3f8-f1f2-4750-b086-e5b5edacaef7 | |
relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isAuthorOfPublication.latestForDiscovery | 5010d3f8-f1f2-4750-b086-e5b5edacaef7 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- On the Lupa¸s q-transform Maslo_2023_SO_MehmetTuran.pdf
- Size:
- 258.58 KB
- Format:
- Adobe Portable Document Format