Forecasting Air Quality in Tripoli: An Evaluation of Deep Learning Models for Hourly PM<sub>2.5</sub> Surface Mass Concentrations

dc.authoridÜnlü, Kamil Demirberk/0000-0002-2393-6691
dc.authorscopusid58170910600
dc.authorscopusid57210105250
dc.authorwosidÜnlü, Kamil Demirberk/AAL-5952-2020
dc.contributor.authorEsager, Marwa Winis Misbah
dc.contributor.authorUnlu, Kamil Demirberk
dc.contributor.otherIndustrial Engineering
dc.date.accessioned2024-07-05T15:25:04Z
dc.date.available2024-07-05T15:25:04Z
dc.date.issued2023
dc.departmentAtılım Universityen_US
dc.department-temp[Esager, Marwa Winis Misbah] Atilim Univ, Grad Sch Nat & Appl Sci, TR-06830 Ankara, Turkiye; [Unlu, Kamil Demirberk] Atilim Univ, Dept Ind Engn, TR-06830 Ankara, Turkiyeen_US
dc.descriptionÜnlü, Kamil Demirberk/0000-0002-2393-6691en_US
dc.description.abstractIn this article, we aimed to study the forecasting of hourly PM2.5 surface mass concentrations in the city of Tripoli, Libya. We employed three state-of-the-art deep learning models, namely long short-term memory, gated recurrent unit, and convolutional neural networks, to forecast PM2.5 levels using univariate time series methodology. Our results revealed that the convolutional neural networks model performed the best, with a coefficient of variation of 99% and a mean absolute percentage error of 0.04. These findings provide valuable insights into the use of deep learning models for forecasting PM2.5 and can inform decision-making regarding air quality management in the city of Tripoli.en_US
dc.identifier.citation8
dc.identifier.doi10.3390/atmos14030478
dc.identifier.issn2073-4433
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85151633844
dc.identifier.urihttps://doi.org/10.3390/atmos14030478
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2504
dc.identifier.volume14en_US
dc.identifier.wosWOS:000954268000001
dc.identifier.wosqualityQ3
dc.institutionauthorÜnlü, Kamil Demirberk
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectneural network modelingen_US
dc.subjecttime series analysisen_US
dc.subjectparticulate matteren_US
dc.subjectair pollutionen_US
dc.subjectdeep learning modeling Libyaen_US
dc.titleForecasting Air Quality in Tripoli: An Evaluation of Deep Learning Models for Hourly PM<sub>2.5</sub> Surface Mass Concentrationsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationb46371b5-7e14-4c8e-a10a-85f150b356b2
relation.isAuthorOfPublication.latestForDiscoveryb46371b5-7e14-4c8e-a10a-85f150b356b2
relation.isOrgUnitOfPublication12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections