Forecasting Air Quality in Tripoli: an Evaluation of Deep Learning Models for Hourly Pm<sub>2.5</Sub> Surface Mass Concentrations
| dc.contributor.author | Esager, Marwa Winis Misbah | |
| dc.contributor.author | Unlu, Kamil Demirberk | |
| dc.contributor.other | Industrial Engineering | |
| dc.contributor.other | 06. School Of Engineering | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-07-05T15:25:04Z | |
| dc.date.available | 2024-07-05T15:25:04Z | |
| dc.date.issued | 2023 | |
| dc.description | Ünlü, Kamil Demirberk/0000-0002-2393-6691 | en_US |
| dc.description.abstract | In this article, we aimed to study the forecasting of hourly PM2.5 surface mass concentrations in the city of Tripoli, Libya. We employed three state-of-the-art deep learning models, namely long short-term memory, gated recurrent unit, and convolutional neural networks, to forecast PM2.5 levels using univariate time series methodology. Our results revealed that the convolutional neural networks model performed the best, with a coefficient of variation of 99% and a mean absolute percentage error of 0.04. These findings provide valuable insights into the use of deep learning models for forecasting PM2.5 and can inform decision-making regarding air quality management in the city of Tripoli. | en_US |
| dc.identifier.doi | 10.3390/atmos14030478 | |
| dc.identifier.issn | 2073-4433 | |
| dc.identifier.scopus | 2-s2.0-85151633844 | |
| dc.identifier.uri | https://doi.org/10.3390/atmos14030478 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/2504 | |
| dc.language.iso | en | en_US |
| dc.publisher | Mdpi | en_US |
| dc.relation.ispartof | Atmosphere | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | neural network modeling | en_US |
| dc.subject | time series analysis | en_US |
| dc.subject | particulate matter | en_US |
| dc.subject | air pollution | en_US |
| dc.subject | deep learning modeling Libya | en_US |
| dc.title | Forecasting Air Quality in Tripoli: an Evaluation of Deep Learning Models for Hourly Pm<sub>2.5</Sub> Surface Mass Concentrations | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Ünlü, Kamil Demirberk/0000-0002-2393-6691 | |
| gdc.author.institutional | Ünlü, Kamil Demirberk | |
| gdc.author.scopusid | 58170910600 | |
| gdc.author.scopusid | 57210105250 | |
| gdc.author.wosid | Ünlü, Kamil Demirberk/AAL-5952-2020 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | [Esager, Marwa Winis Misbah] Atilim Univ, Grad Sch Nat & Appl Sci, TR-06830 Ankara, Turkiye; [Unlu, Kamil Demirberk] Atilim Univ, Dept Ind Engn, TR-06830 Ankara, Turkiye | en_US |
| gdc.description.issue | 3 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 478 | |
| gdc.description.volume | 14 | en_US |
| gdc.description.wosquality | Q3 | |
| gdc.identifier.openalex | W4322741521 | |
| gdc.identifier.wos | WOS:000954268000001 | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 17.0 | |
| gdc.oaire.influence | 3.4194625E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | particulate matter | |
| gdc.oaire.keywords | neural network modeling; time series analysis; particulate matter; air pollution; deep learning modeling Libya | |
| gdc.oaire.keywords | neural network modeling | |
| gdc.oaire.keywords | time series analysis | |
| gdc.oaire.keywords | deep learning modeling Libya | |
| gdc.oaire.keywords | Meteorology. Climatology | |
| gdc.oaire.keywords | air pollution | |
| gdc.oaire.keywords | QC851-999 | |
| gdc.oaire.popularity | 1.6166913E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.fwci | 2.008 | |
| gdc.openalex.normalizedpercentile | 1.0 | |
| gdc.openalex.toppercent | TOP 1% | |
| gdc.opencitations.count | 15 | |
| gdc.plumx.mendeley | 26 | |
| gdc.plumx.scopuscites | 16 | |
| gdc.scopus.citedcount | 16 | |
| gdc.wos.citedcount | 14 | |
| relation.isAuthorOfPublication | b46371b5-7e14-4c8e-a10a-85f150b356b2 | |
| relation.isAuthorOfPublication.latestForDiscovery | b46371b5-7e14-4c8e-a10a-85f150b356b2 | |
| relation.isOrgUnitOfPublication | 12c9377e-b7fe-4600-8326-f3613a05653d | |
| relation.isOrgUnitOfPublication | 4abda634-67fd-417f-bee6-59c29fc99997 | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 12c9377e-b7fe-4600-8326-f3613a05653d |