Forecasting Air Quality in Tripoli: an Evaluation of Deep Learning Models for Hourly Pm<sub>2.5</Sub> Surface Mass Concentrations

dc.contributor.author Esager, Marwa Winis Misbah
dc.contributor.author Unlu, Kamil Demirberk
dc.contributor.other Industrial Engineering
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:25:04Z
dc.date.available 2024-07-05T15:25:04Z
dc.date.issued 2023
dc.description Ünlü, Kamil Demirberk/0000-0002-2393-6691 en_US
dc.description.abstract In this article, we aimed to study the forecasting of hourly PM2.5 surface mass concentrations in the city of Tripoli, Libya. We employed three state-of-the-art deep learning models, namely long short-term memory, gated recurrent unit, and convolutional neural networks, to forecast PM2.5 levels using univariate time series methodology. Our results revealed that the convolutional neural networks model performed the best, with a coefficient of variation of 99% and a mean absolute percentage error of 0.04. These findings provide valuable insights into the use of deep learning models for forecasting PM2.5 and can inform decision-making regarding air quality management in the city of Tripoli. en_US
dc.identifier.doi 10.3390/atmos14030478
dc.identifier.issn 2073-4433
dc.identifier.scopus 2-s2.0-85151633844
dc.identifier.uri https://doi.org/10.3390/atmos14030478
dc.identifier.uri https://hdl.handle.net/20.500.14411/2504
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.ispartof Atmosphere
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject neural network modeling en_US
dc.subject time series analysis en_US
dc.subject particulate matter en_US
dc.subject air pollution en_US
dc.subject deep learning modeling Libya en_US
dc.title Forecasting Air Quality in Tripoli: an Evaluation of Deep Learning Models for Hourly Pm<sub>2.5</Sub> Surface Mass Concentrations en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Ünlü, Kamil Demirberk/0000-0002-2393-6691
gdc.author.institutional Ünlü, Kamil Demirberk
gdc.author.scopusid 58170910600
gdc.author.scopusid 57210105250
gdc.author.wosid Ünlü, Kamil Demirberk/AAL-5952-2020
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Esager, Marwa Winis Misbah] Atilim Univ, Grad Sch Nat & Appl Sci, TR-06830 Ankara, Turkiye; [Unlu, Kamil Demirberk] Atilim Univ, Dept Ind Engn, TR-06830 Ankara, Turkiye en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 478
gdc.description.volume 14 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W4322741521
gdc.identifier.wos WOS:000954268000001
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 17.0
gdc.oaire.influence 3.4194625E-9
gdc.oaire.isgreen false
gdc.oaire.keywords particulate matter
gdc.oaire.keywords neural network modeling; time series analysis; particulate matter; air pollution; deep learning modeling Libya
gdc.oaire.keywords neural network modeling
gdc.oaire.keywords time series analysis
gdc.oaire.keywords deep learning modeling Libya
gdc.oaire.keywords Meteorology. Climatology
gdc.oaire.keywords air pollution
gdc.oaire.keywords QC851-999
gdc.oaire.popularity 1.6166913E-8
gdc.oaire.publicfunded false
gdc.openalex.fwci 2.008
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 15
gdc.plumx.mendeley 26
gdc.plumx.scopuscites 16
gdc.scopus.citedcount 16
gdc.wos.citedcount 14
relation.isAuthorOfPublication b46371b5-7e14-4c8e-a10a-85f150b356b2
relation.isAuthorOfPublication.latestForDiscovery b46371b5-7e14-4c8e-a10a-85f150b356b2
relation.isOrgUnitOfPublication 12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections