Forecasting Air Quality in Tripoli: an Evaluation of Deep Learning Models for Hourly Pm<sub>2.5</Sub> Surface Mass Concentrations

dc.authorid Ünlü, Kamil Demirberk/0000-0002-2393-6691
dc.authorscopusid 58170910600
dc.authorscopusid 57210105250
dc.authorwosid Ünlü, Kamil Demirberk/AAL-5952-2020
dc.contributor.author Esager, Marwa Winis Misbah
dc.contributor.author Unlu, Kamil Demirberk
dc.contributor.other Industrial Engineering
dc.date.accessioned 2024-07-05T15:25:04Z
dc.date.available 2024-07-05T15:25:04Z
dc.date.issued 2023
dc.department Atılım University en_US
dc.department-temp [Esager, Marwa Winis Misbah] Atilim Univ, Grad Sch Nat & Appl Sci, TR-06830 Ankara, Turkiye; [Unlu, Kamil Demirberk] Atilim Univ, Dept Ind Engn, TR-06830 Ankara, Turkiye en_US
dc.description Ünlü, Kamil Demirberk/0000-0002-2393-6691 en_US
dc.description.abstract In this article, we aimed to study the forecasting of hourly PM2.5 surface mass concentrations in the city of Tripoli, Libya. We employed three state-of-the-art deep learning models, namely long short-term memory, gated recurrent unit, and convolutional neural networks, to forecast PM2.5 levels using univariate time series methodology. Our results revealed that the convolutional neural networks model performed the best, with a coefficient of variation of 99% and a mean absolute percentage error of 0.04. These findings provide valuable insights into the use of deep learning models for forecasting PM2.5 and can inform decision-making regarding air quality management in the city of Tripoli. en_US
dc.identifier.citationcount 8
dc.identifier.doi 10.3390/atmos14030478
dc.identifier.issn 2073-4433
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-85151633844
dc.identifier.uri https://doi.org/10.3390/atmos14030478
dc.identifier.uri https://hdl.handle.net/20.500.14411/2504
dc.identifier.volume 14 en_US
dc.identifier.wos WOS:000954268000001
dc.identifier.wosquality Q3
dc.institutionauthor Ünlü, Kamil Demirberk
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 16
dc.subject neural network modeling en_US
dc.subject time series analysis en_US
dc.subject particulate matter en_US
dc.subject air pollution en_US
dc.subject deep learning modeling Libya en_US
dc.title Forecasting Air Quality in Tripoli: an Evaluation of Deep Learning Models for Hourly Pm<sub>2.5</Sub> Surface Mass Concentrations en_US
dc.type Article en_US
dc.wos.citedbyCount 13
dspace.entity.type Publication
relation.isAuthorOfPublication b46371b5-7e14-4c8e-a10a-85f150b356b2
relation.isAuthorOfPublication.latestForDiscovery b46371b5-7e14-4c8e-a10a-85f150b356b2
relation.isOrgUnitOfPublication 12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery 12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections