A Note on Caristi-Type Cyclic Maps: Related Results and Applications

dc.contributor.author Du, Wei-Shih
dc.contributor.author Karapinar, Erdal
dc.contributor.other Mathematics
dc.contributor.other 02. School of Arts and Sciences
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T14:26:08Z
dc.date.available 2024-07-05T14:26:08Z
dc.date.issued 2013
dc.description KARAPINAR, ERDAL/0000-0002-6798-3254 en_US
dc.description.abstract In this note, we first introduce the concept of Caristi-type cyclic map and present a new convergence theorem and a best proximity point theorem for Caristi-type cyclic maps. It should be mentioned that in our results, the dominated functions need not possess the lower semicontinuity property. Some best proximity point results and convergence theorems in the literature have been derived from our main results. Consequently, the presented results improve, extend and generalize some of the existence results on the topic. en_US
dc.description.sponsorship National Science Council of the Republic of China [NSC 102-2115-M-017-001] en_US
dc.description.sponsorship The first author was supported by Grant No. NSC 102-2115-M-017-001 of the National Science Council of the Republic of China. en_US
dc.identifier.doi 10.1186/1687-1812-2013-344
dc.identifier.issn 1687-1812
dc.identifier.scopus 2-s2.0-84896460341
dc.identifier.uri https://doi.org/10.1186/1687-1812-2013-344
dc.identifier.uri https://hdl.handle.net/20.500.14411/106
dc.language.iso en en_US
dc.publisher Springer international Publishing Ag en_US
dc.relation.ispartof Fixed Point Theory and Applications
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject best proximity point en_US
dc.subject Caristi-type cyclic map en_US
dc.subject MT-function (R-function) en_US
dc.subject MT-cyclic contraction en_US
dc.subject Caristi-type fixed point theorem en_US
dc.title A Note on Caristi-Type Cyclic Maps: Related Results and Applications en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id KARAPINAR, ERDAL/0000-0002-6798-3254
gdc.author.institutional Karapınar, Erdal
gdc.author.scopusid 27169183500
gdc.author.scopusid 16678995500
gdc.author.wosid KARAPINAR, ERDAL/H-3177-2011
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Du, Wei-Shih] Natl Kaohsiung Normal Univ, Dept Math, Kaohsiung 824, Taiwan; [Karapinar, Erdal] Atilim Univ, Dept Math, Ankara, Turkey en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.volume 2013
gdc.identifier.openalex W2099899227
gdc.identifier.wos WOS:000209289900001
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 8.0
gdc.oaire.influence 3.939906E-9
gdc.oaire.isgreen false
gdc.oaire.keywords best proximity point Caristi-type cyclic map;-function (?-function);-cyclic contraction;Caristi-type fixed point theorem
gdc.oaire.keywords Applied Mathematics
gdc.oaire.keywords Geometry and Topology
gdc.oaire.popularity 5.782726E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.fwci 3.112
gdc.openalex.normalizedpercentile 0.81
gdc.opencitations.count 12
gdc.plumx.crossrefcites 11
gdc.plumx.mendeley 7
gdc.plumx.scopuscites 19
gdc.scopus.citedcount 19
gdc.wos.citedcount 13
relation.isAuthorOfPublication 69e25f84-afec-4c79-a19a-1e7811d90143
relation.isAuthorOfPublication.latestForDiscovery 69e25f84-afec-4c79-a19a-1e7811d90143
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections