Optimization and energy analysis of a novel geothermal heat exchanger for photovoltaic panel cooling

dc.authoridJafari, Rahim/0000-0003-1155-3711
dc.authorscopusid54989651300
dc.authorwosidJAFARI, RAHIM/KGM-2438-2024
dc.contributor.authorJafari, Rahim
dc.contributor.otherAutomotive Engineering
dc.date.accessioned2024-07-05T15:19:53Z
dc.date.available2024-07-05T15:19:53Z
dc.date.issued2021
dc.departmentAtılım Universityen_US
dc.department-temp[Jafari, Rahim] Atilim Univ, Dept Automot Engn, Kizilcasar St, TR-06830 Ankara, Turkey; [Jafari, Rahim] Microtherm Enerji Ltd, Ostim OSB, Ankara, Turkeyen_US
dc.descriptionJafari, Rahim/0000-0003-1155-3711en_US
dc.description.abstractElectrical energy and conversion efficiency of the photovoltaic (PV) solar panels are measured under standard test conditions in some microseconds at the room temperature (25 degrees C). It also is seen that the actual working conditions, on the other hand, with higher ambient temperature and continuous generated heat in the PV cells can lead to reduction in reduce their electricity generation and long-term sustainability. In the current work, the coolant (water + ethylene glycol) circulates between two heat exchangers; the minichannel heat exchanger is bounded to the PV cells and geothermal heat exchanger is buried underground, and it is set to remove the heat from PV cells to the ground. Six control factors of the geothermal cooling system are considered for the purpose of optimization using Taguchi design and main effect analysis. These parameters are pipe length, soil thermal conductivity, coolant flow rate, adjacent coil distance, pipe inner diameter and pipe thickness. The experimental results show that the average net electricity generation of the cooled PV panel is improved 9.8% compared to the PV panel without cooling system. However, with the same geothermal heat exchanger it drops to 6.2% as the cooled panel number is doubled. The simulation results reveal that the optimum configuration of the geothermal cooling system is capable of enhancing the net electricity generation of the twin cooled panels up to 11.6%. The LCOE of the optimized geothermal cooling system was calculated 0.089 euro/kWh versus the reference panel of 0.102 euro/kWh for the case study of 30 kW PV solar plant.en_US
dc.identifier.citation6
dc.identifier.doi10.1016/j.solener.2021.08.046
dc.identifier.endpage133en_US
dc.identifier.issn0038-092X
dc.identifier.issn1471-1257
dc.identifier.scopus2-s2.0-85113229597
dc.identifier.scopusqualityQ1
dc.identifier.startpage122en_US
dc.identifier.urihttps://doi.org/10.1016/j.solener.2021.08.046
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2029
dc.identifier.volume226en_US
dc.identifier.wosWOS:000697924600002
dc.identifier.wosqualityQ2
dc.institutionauthorJafari, Rahim
dc.language.isoenen_US
dc.publisherPergamon-elsevier Science Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPV solar panelen_US
dc.subjectGeothermal heat exchangeren_US
dc.subjectMinichannelen_US
dc.subjectTaguchi designen_US
dc.subjectOptimizationen_US
dc.titleOptimization and energy analysis of a novel geothermal heat exchanger for photovoltaic panel coolingen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication5bcaecde-f33a-497d-ac10-660e2fed2f16
relation.isAuthorOfPublication.latestForDiscovery5bcaecde-f33a-497d-ac10-660e2fed2f16
relation.isOrgUnitOfPublication7d024e9b-1f00-4f1d-a95a-f448a474eea9
relation.isOrgUnitOfPublication.latestForDiscovery7d024e9b-1f00-4f1d-a95a-f448a474eea9

Files

Collections