On locally graded barely transitive groups

dc.authoridOnur, Cansu Betin/0000-0002-3691-1469
dc.authorscopusid57561890900
dc.authorscopusid6505840439
dc.authorwosidOnur, Cansu Betin/AAY-5136-2020
dc.authorwosidKUZUCUOGLU, Mahmut/ABA-4204-2020
dc.contributor.authorBetin, Cansu
dc.contributor.authorKuzucuoglu, Mahmut
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T14:28:27Z
dc.date.available2024-07-05T14:28:27Z
dc.date.issued2013
dc.departmentAtılım Universityen_US
dc.department-temp[Betin, Cansu] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey; [Kuzucuoglu, Mahmut] Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkeyen_US
dc.descriptionOnur, Cansu Betin/0000-0002-3691-1469;en_US
dc.description.abstractWe show that a barely transitive group is totally imprimitive if and only if it is locally graded. Moreover, we obtain the description of a barely transitive group G for the case G has a cyclic subgroup aOE (c) x > which intersects non-trivially with all subgroups and for the case a point stabilizer H of G has a subgroup H (1) of finite index in H satisfying the identity chi(H (1)) = 1, where chi is a multi-linear commutator of weight w.en_US
dc.identifier.citation0
dc.identifier.doi10.2478/s11533-013-0240-x
dc.identifier.endpage1196en_US
dc.identifier.issn1895-1074
dc.identifier.issue7en_US
dc.identifier.scopus2-s2.0-84876934108
dc.identifier.startpage1188en_US
dc.identifier.urihttps://doi.org/10.2478/s11533-013-0240-x
dc.identifier.urihttps://hdl.handle.net/20.500.14411/388
dc.identifier.volume11en_US
dc.identifier.wosWOS:000318278400003
dc.institutionauthorOnur, Cansu Betin
dc.language.isoenen_US
dc.publisherversitaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLocally graded groupsen_US
dc.subjectLocally finite groupsen_US
dc.subjectQuasi-finite groupsen_US
dc.subjectSplitting automorphismen_US
dc.titleOn locally graded barely transitive groupsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication665ba6b0-4e09-4188-8704-8386edff2b10
relation.isAuthorOfPublication.latestForDiscovery665ba6b0-4e09-4188-8704-8386edff2b10
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections