A Study on the Performance Evaluation of Wavelet Decomposition in Transient-Based Radio Frequency Fingerprinting of Bluetooth Devices

dc.authoridKara, Ali/0000-0002-9739-7619
dc.authorscopusid57413285800
dc.authorscopusid51763497600
dc.authorscopusid7102824862
dc.contributor.authorAlmashaqbeh, Hemam
dc.contributor.authorDalveren, Yaser
dc.contributor.authorKara, Ali
dc.contributor.otherDepartment of Electrical & Electronics Engineering
dc.date.accessioned2024-07-05T15:16:51Z
dc.date.available2024-07-05T15:16:51Z
dc.date.issued2022
dc.departmentAtılım Universityen_US
dc.department-temp[Almashaqbeh, Hemam] Atilim Univ, Grad Sch Nat & Appl Sci, Ankara, Turkey; [Dalveren, Yaser] Atilim Univ, Avion Dept, Ankara, Turkey; [Kara, Ali] Gazi Univ, Elect & Elect Engn Dept, Yukselis Sokak, Ankara, Turkeyen_US
dc.descriptionKara, Ali/0000-0002-9739-7619en_US
dc.description.abstractRadio frequency fingerprinting (RFF) is used as a physical-layer security method to provide security in wireless networks. Basically, it exploits the distinctive features (fingerprints) extracted from the physical waveforms emitted from radio devices in the network. One of the major challenges in RFF is to create robust features forming the fingerprints of radio devices. Here, dual-tree complex wavelet transform (DT-CWT) provides an accurate way of extracting those robust features. However, its performance on the RFF of Bluetooth transients which fall into narrowband signaling has not been reported yet. Therefore, this study examines the performance of DT-CWT features on the use of transient-based RFF of Bluetooth devices. Initially, experimentally collected Bluetooth transients from different smartphones are decomposed by DT-CWT. Then, the characteristics and statistics of the wavelet domain signal are exploited to create robust features. Next, the support vector machine (SVM) is used to classify the smartphones. The classification accuracy is demonstrated by varying channel signal-to-noise ratio (SNR) and the size of transient duration. Results show that reasonable accuracy can be achieved (lower bound of 88%) even with short transient duration (1024 samples) at low SNRs (0-5 dB).en_US
dc.identifier.citationcount7
dc.identifier.doi10.1002/mop.33162
dc.identifier.endpage649en_US
dc.identifier.issn0895-2477
dc.identifier.issn1098-2760
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85122881404
dc.identifier.startpage643en_US
dc.identifier.urihttps://doi.org/10.1002/mop.33162
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1680
dc.identifier.volume64en_US
dc.identifier.wosWOS:000745018500001
dc.identifier.wosqualityQ4
dc.institutionauthorDalveren, Yaser
dc.institutionauthorKara, Ali
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBluetoothen_US
dc.subjectcomplex wavelet transformen_US
dc.subjectdual-treeen_US
dc.subjectRF fingerprintingen_US
dc.subjectsupport vector machineen_US
dc.titleA Study on the Performance Evaluation of Wavelet Decomposition in Transient-Based Radio Frequency Fingerprinting of Bluetooth Devicesen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication55e082ac-14c0-46a6-b8fa-50c5e40b59c8
relation.isAuthorOfPublicationbe728837-c599-49c1-8e8d-81b90219bb15
relation.isAuthorOfPublication.latestForDiscovery55e082ac-14c0-46a6-b8fa-50c5e40b59c8
relation.isOrgUnitOfPublicationc3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscoveryc3c9b34a-b165-4cd6-8959-dc25e91e206b

Files

Collections