A Study on the Performance Evaluation of Wavelet Decomposition in Transient-Based Radio Frequency Fingerprinting of Bluetooth Devices

dc.authorid Kara, Ali/0000-0002-9739-7619
dc.authorscopusid 57413285800
dc.authorscopusid 51763497600
dc.authorscopusid 7102824862
dc.contributor.author Almashaqbeh, Hemam
dc.contributor.author Dalveren, Yaser
dc.contributor.author Kara, Ali
dc.contributor.other Department of Electrical & Electronics Engineering
dc.date.accessioned 2024-07-05T15:16:51Z
dc.date.available 2024-07-05T15:16:51Z
dc.date.issued 2022
dc.department Atılım University en_US
dc.department-temp [Almashaqbeh, Hemam] Atilim Univ, Grad Sch Nat & Appl Sci, Ankara, Turkey; [Dalveren, Yaser] Atilim Univ, Avion Dept, Ankara, Turkey; [Kara, Ali] Gazi Univ, Elect & Elect Engn Dept, Yukselis Sokak, Ankara, Turkey en_US
dc.description Kara, Ali/0000-0002-9739-7619 en_US
dc.description.abstract Radio frequency fingerprinting (RFF) is used as a physical-layer security method to provide security in wireless networks. Basically, it exploits the distinctive features (fingerprints) extracted from the physical waveforms emitted from radio devices in the network. One of the major challenges in RFF is to create robust features forming the fingerprints of radio devices. Here, dual-tree complex wavelet transform (DT-CWT) provides an accurate way of extracting those robust features. However, its performance on the RFF of Bluetooth transients which fall into narrowband signaling has not been reported yet. Therefore, this study examines the performance of DT-CWT features on the use of transient-based RFF of Bluetooth devices. Initially, experimentally collected Bluetooth transients from different smartphones are decomposed by DT-CWT. Then, the characteristics and statistics of the wavelet domain signal are exploited to create robust features. Next, the support vector machine (SVM) is used to classify the smartphones. The classification accuracy is demonstrated by varying channel signal-to-noise ratio (SNR) and the size of transient duration. Results show that reasonable accuracy can be achieved (lower bound of 88%) even with short transient duration (1024 samples) at low SNRs (0-5 dB). en_US
dc.identifier.citationcount 7
dc.identifier.doi 10.1002/mop.33162
dc.identifier.endpage 649 en_US
dc.identifier.issn 0895-2477
dc.identifier.issn 1098-2760
dc.identifier.issue 4 en_US
dc.identifier.scopus 2-s2.0-85122881404
dc.identifier.startpage 643 en_US
dc.identifier.uri https://doi.org/10.1002/mop.33162
dc.identifier.uri https://hdl.handle.net/20.500.14411/1680
dc.identifier.volume 64 en_US
dc.identifier.wos WOS:000745018500001
dc.identifier.wosquality Q4
dc.institutionauthor Dalveren, Yaser
dc.institutionauthor Kara, Ali
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 13
dc.subject Bluetooth en_US
dc.subject complex wavelet transform en_US
dc.subject dual-tree en_US
dc.subject RF fingerprinting en_US
dc.subject support vector machine en_US
dc.title A Study on the Performance Evaluation of Wavelet Decomposition in Transient-Based Radio Frequency Fingerprinting of Bluetooth Devices en_US
dc.type Article en_US
dc.wos.citedbyCount 8
dspace.entity.type Publication
relation.isAuthorOfPublication 55e082ac-14c0-46a6-b8fa-50c5e40b59c8
relation.isAuthorOfPublication be728837-c599-49c1-8e8d-81b90219bb15
relation.isAuthorOfPublication.latestForDiscovery 55e082ac-14c0-46a6-b8fa-50c5e40b59c8
relation.isOrgUnitOfPublication c3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscovery c3c9b34a-b165-4cd6-8959-dc25e91e206b

Files

Collections