Cohomology of Sheaves of Frechet Algebras and Spectral Theory

dc.authorscopusid16315786100
dc.authorwosidDosi, Anar/C-2718-2017
dc.contributor.authorDosiev, AA
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T15:10:07Z
dc.date.available2024-07-05T15:10:07Z
dc.date.issued2005
dc.departmentAtılım Universityen_US
dc.department-tempAtilim Univ, Dept Math, Ankara, Turkeyen_US
dc.description.abstractWe propose a holomorpbic functional calculus for a noncommutative operator family generating a supernilpotent Lie subalgebra. This calculus extends Taylor's holomorphic functional calculus.en_US
dc.identifier.citationcount11
dc.identifier.doi10.1007/s10688-005-0041-5
dc.identifier.endpage228en_US
dc.identifier.issn0016-2663
dc.identifier.issn1573-8485
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-26244461590
dc.identifier.startpage225en_US
dc.identifier.urihttps://doi.org/10.1007/s10688-005-0041-5
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1251
dc.identifier.volume39en_US
dc.identifier.wosWOS:000232583600007
dc.identifier.wosqualityQ4
dc.institutionauthorDosiyev, Anar
dc.language.isoenen_US
dc.publisherPleiades Publishing incen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount8
dc.subjectfunctional calculusen_US
dc.subjectPutinar spectrumen_US
dc.subjectsheaf of Frechet algebrasen_US
dc.subjectsheaf cohomologyen_US
dc.titleCohomology of Sheaves of Frechet Algebras and Spectral Theoryen_US
dc.typeArticleen_US
dc.wos.citedbyCount9
dspace.entity.typePublication
relation.isAuthorOfPublication1436ccba-ca18-4d07-b86b-054bb550b62c
relation.isAuthorOfPublication.latestForDiscovery1436ccba-ca18-4d07-b86b-054bb550b62c
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections