A Systematic Approach To Optimizing Energy-Efficient Automated Systems With Learning Models for Thermal Comfort Control in Indoor Spaces

dc.contributor.author Erisen, Serdar
dc.contributor.other Architecture
dc.contributor.other Department of Architecture
dc.contributor.other 15. Graduate School of Natural and Applied Sciences
dc.contributor.other 03. School of Fine Arts Design & Architecture
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:22:32Z
dc.date.available 2024-07-05T15:22:32Z
dc.date.issued 2023
dc.description Erişen, Serdar/0000-0002-7192-0889 en_US
dc.description.abstract Energy-efficient automated systems for thermal comfort control in buildings is an emerging research area that has the potential to be considered through a combination of smart solutions. This research aims to explore and optimize energy-efficient automated systems with regard to thermal comfort parameters, energy use, workloads, and their operation for thermal comfort control in indoor spaces. In this research, a systematic approach is deployed, and building information modeling (BIM) software and energy optimization algorithms are applied at first to thermal comfort parameters, such as natural ventilation, to derive the contextual information and compute the building performance of an indoor environment with Internet of Things (IoT) technologies installed. The open-source dataset from the experiment environment is also applied in training and testing unique black box models, which are examined through the users' voting data acquired via the personal comfort systems (PCS), thus revealing the significance of Fanger's approach and the relationship between people and their surroundings in developing the learning models. The contextual information obtained via BIM simulations, the IoT-based data, and the building performance evaluations indicated the critical levels of energy use and the capacities of the thermal comfort control systems. Machine learning models were found to be significant in optimizing the operation of the automated systems, and deep learning models were momentous in understanding and predicting user activities and thermal comfort levels for well-being; this can optimize energy use in smart buildings. en_US
dc.identifier.doi 10.3390/buildings13071824
dc.identifier.issn 2075-5309
dc.identifier.scopus 2-s2.0-85166191258
dc.identifier.uri https://doi.org/10.3390/buildings13071824
dc.identifier.uri https://hdl.handle.net/20.500.14411/2216
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.ispartof Buildings
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject indoor air en_US
dc.subject thermal comfort en_US
dc.subject user occupation en_US
dc.subject artificial intelligence en_US
dc.subject machine learning en_US
dc.subject natural ventilation en_US
dc.subject building performance en_US
dc.subject building information modeling en_US
dc.title A Systematic Approach To Optimizing Energy-Efficient Automated Systems With Learning Models for Thermal Comfort Control in Indoor Spaces en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Erişen, Serdar/0000-0002-7192-0889
gdc.author.institutional Erişen, Serdar
gdc.author.scopusid 57218221719
gdc.author.wosid Erişen, Serdar/B-3030-2017
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Erisen, Serdar] Atilim Univ, Dept Architecture, TR-06830 Ankara, Turkiye en_US
gdc.description.issue 7 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 1824
gdc.description.volume 13 en_US
gdc.identifier.openalex W4384932559
gdc.identifier.wos WOS:001035043100001
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 12.0
gdc.oaire.influence 3.0408784E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Building construction
gdc.oaire.keywords thermal comfort
gdc.oaire.keywords natural ventilation
gdc.oaire.keywords indoor air
gdc.oaire.keywords indoor air; thermal comfort; user occupation; artificial intelligence; machine learning; natural ventilation; building performance; building information modeling
gdc.oaire.keywords artificial intelligence
gdc.oaire.keywords user occupation
gdc.oaire.keywords machine learning
gdc.oaire.keywords TH1-9745
gdc.oaire.popularity 1.18105055E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0105 earth and related environmental sciences
gdc.openalex.fwci 2.495
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 9
gdc.plumx.mendeley 97
gdc.plumx.newscount 1
gdc.plumx.scopuscites 11
gdc.scopus.citedcount 11
gdc.wos.citedcount 11
relation.isAuthorOfPublication 79857cf9-13bf-42fb-932a-31d21cb167c6
relation.isAuthorOfPublication.latestForDiscovery 79857cf9-13bf-42fb-932a-31d21cb167c6
relation.isOrgUnitOfPublication f9fa2b5c-d081-4ee8-828c-ecfaa869079e
relation.isOrgUnitOfPublication 951fac84-03c9-4e5f-a719-387e9041c9c3
relation.isOrgUnitOfPublication dff2e5a6-d02d-4bef-8b9e-efebe3919b10
relation.isOrgUnitOfPublication 4e8a6212-3f7f-4a23-a367-c8bed86d202c
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery f9fa2b5c-d081-4ee8-828c-ecfaa869079e

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A Systematic Approach to Optimizingbuildings-13-01824.pdf
Size:
5.18 MB
Format:
Adobe Portable Document Format

Collections